Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook

Proposed mechanism for the photoelectrochemistry: charges are separated at a visible-light-irradiated Au NPs TiO2 system.
CREDIT
©Science China Press
Proposed mechanism for the photoelectrochemistry: charges are separated at a visible-light-irradiated Au NPs TiO2 system. CREDIT ©Science China Press

Abstract:
In the quest to solve solar energy conversion as well as environmental remediation issues, photocatalysis using sunlight have been attracting tremendous attention. Various semiconductors with large band gaps have been proven to be effective under UV light, e.g., TiO2. However, UV light accounts for only ~4% while visible light occupies ~43% of total sunlight. From the perspective of both chemistry and practical applications, it is undoubtedly important to develop visible-light-responsive photocatalytic materials.

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook

Beijing, China | Posted on April 27th, 2017

Over the past several years, coinage metal (Au, Ag and Cu) nanoparticles (NPs) photosensitization over semiconductors with a large band gap has emerged as a promising strategy for developing visible-light responsive photocatalytic materials. In this review, mechanisms of metal-induced photocatalysis (MIP) were first summarized, e.g., hot-electron transfer (see in the Figure 1). Subsequently, the progress towards MIP applications in photocatalytic and PEC water splitting, photoreduction of CO2 and activation of inert molecules such as CH4, N2 were reviewed. Generally, visible-light activity or enhancement was achieved after the introduction of these metal NPs. Nevertheless, for most present metal induced photocatalytic water-splitting under visible light, the obtained apparent quantum efficiency (AQE) was relatively low (i.e. <1%). So, developing efficient metal semiconductor composite (MSC) materials is still highly needed in this field. To highlight this point, the authors summarized important works in promoting the efficiency of MIP from perspective of achieving broadband or effective light-harvesting, enhancing charge-carrier separation, decoration with cocatalyst etc.

On the other hand, it is undoubted that particle-size effect was important even crucial in MIP systems. Particular attention was paid on this issue and selected works were reviewed though consensus has not been reached yet. Some researchers claimed that larger metal NPs were favorable for its strong SPR intensity leading to high electron transfer efficiency, while some others pointed out that smaller ones were better because of more efficient charge separation could be achieved. Compromise viewpoint also existed, i.e., both small and large metal NPs were important. So, more effort is needed on this issue.

Exploring light absorption of metal NPs in photocatalysis represents a class of novel and promising approaches in exploring efficient visible-light responsive photocatalysts. However, to achieve this goal, there are still many challenges to be addressed. At the end of this review, the authors briefly discussed the challenges and possible development directions of MIP. It includes deeper understanding the mechanism behind MIP, further improve the efficiency, rational design and precise control of plasmonic metal etc. For detailed information, please refer to the article "Metal nanoparticles induced photocatalysis", https://doi.org/10.1093/nsr/nwx019 .

###

This research received funding from the National Basic Research Program of China and the National Natural Sciences Foundation of China.

####

About Science China Press
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

For more information, please click here

Contacts:
Lequan Liu

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Chemistry

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Clarifiying complex chemical processes with quantum computers August 3rd, 2017

Strem Chemicals Surpasses ChemStewards® Requirements: Strem Qualifies for SOCMA’s “Excellence” Ranking August 3rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Discoveries

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Announcements

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project