Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook

Proposed mechanism for the photoelectrochemistry: charges are separated at a visible-light-irradiated Au NPs TiO2 system.
CREDIT
©Science China Press
Proposed mechanism for the photoelectrochemistry: charges are separated at a visible-light-irradiated Au NPs TiO2 system. CREDIT ©Science China Press

Abstract:
In the quest to solve solar energy conversion as well as environmental remediation issues, photocatalysis using sunlight have been attracting tremendous attention. Various semiconductors with large band gaps have been proven to be effective under UV light, e.g., TiO2. However, UV light accounts for only ~4% while visible light occupies ~43% of total sunlight. From the perspective of both chemistry and practical applications, it is undoubtedly important to develop visible-light-responsive photocatalytic materials.

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook

Beijing, China | Posted on April 27th, 2017

Over the past several years, coinage metal (Au, Ag and Cu) nanoparticles (NPs) photosensitization over semiconductors with a large band gap has emerged as a promising strategy for developing visible-light responsive photocatalytic materials. In this review, mechanisms of metal-induced photocatalysis (MIP) were first summarized, e.g., hot-electron transfer (see in the Figure 1). Subsequently, the progress towards MIP applications in photocatalytic and PEC water splitting, photoreduction of CO2 and activation of inert molecules such as CH4, N2 were reviewed. Generally, visible-light activity or enhancement was achieved after the introduction of these metal NPs. Nevertheless, for most present metal induced photocatalytic water-splitting under visible light, the obtained apparent quantum efficiency (AQE) was relatively low (i.e. <1%). So, developing efficient metal semiconductor composite (MSC) materials is still highly needed in this field. To highlight this point, the authors summarized important works in promoting the efficiency of MIP from perspective of achieving broadband or effective light-harvesting, enhancing charge-carrier separation, decoration with cocatalyst etc.

On the other hand, it is undoubted that particle-size effect was important even crucial in MIP systems. Particular attention was paid on this issue and selected works were reviewed though consensus has not been reached yet. Some researchers claimed that larger metal NPs were favorable for its strong SPR intensity leading to high electron transfer efficiency, while some others pointed out that smaller ones were better because of more efficient charge separation could be achieved. Compromise viewpoint also existed, i.e., both small and large metal NPs were important. So, more effort is needed on this issue.

Exploring light absorption of metal NPs in photocatalysis represents a class of novel and promising approaches in exploring efficient visible-light responsive photocatalysts. However, to achieve this goal, there are still many challenges to be addressed. At the end of this review, the authors briefly discussed the challenges and possible development directions of MIP. It includes deeper understanding the mechanism behind MIP, further improve the efficiency, rational design and precise control of plasmonic metal etc. For detailed information, please refer to the article "Metal nanoparticles induced photocatalysis", https://doi.org/10.1093/nsr/nwx019 .

###

This research received funding from the National Basic Research Program of China and the National Natural Sciences Foundation of China.

####

About Science China Press
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

For more information, please click here

Contacts:
Lequan Liu

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Chemistry

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Discoveries

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project