Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Better living through pressure: Functional nanomaterials made easy

Sandia National Laboratories technologist Joshua Usher loads a nanoparticle-loaded target in the main power flow section of Veloce, a powerful Sandia pulsed-power generator.
CREDIT
Randy Montoya, Sandia National Laboratories
Sandia National Laboratories technologist Joshua Usher loads a nanoparticle-loaded target in the main power flow section of Veloce, a powerful Sandia pulsed-power generator. CREDIT Randy Montoya, Sandia National Laboratories

Abstract:
Using pressure instead of chemicals, a Sandia National Laboratories team has fabricated nanoparticles into nanowire-array structures similar to those that underlie the surfaces of touch-screens for sensors, computers, phones and TVs. The pressure-based fabrication process takes nanoseconds. Chemistry-based industrial techniques take hours.

Better living through pressure: Functional nanomaterials made easy

Albuquerque, NM | Posted on April 19th, 2017

The process, called stress-induced fabrication, "is a new technology that mimics imprint processes already used by manufacturers," said Sandia researcher Hongyou Fan, who led the effort. "Only instead of embossing credit cards, we're using the same type of process to fabricate nanowires or other nano-sized components at ultrashort time scales."

The method, for which three patents have been issued, is 9 million times faster than any known chemical method when performed on Sandia's Veloce pulsed-power machine, which generates pressures on the order of 100,000 atmospheres, said Fan's colleague, Jack Wise.

Less exotically, for manufacturing instead of research, embossing machines similar to those already commercially in use could serve. "It's conceivable that few modifications would be needed to convert the machines from embossing to fabrication," Fan said.

The Sandia process saves:

time, because circuits can be fabricated in seconds instead of the hours required by chemical methods;
the environment, because there's no chemical waste to clean up;
materials, because exactly the amount needed is placed on a substrate.
Also, defects common in industrial chemical fabrication of semiconductors are reduced in number by the pressure process, which acts to fill any vacancies occurring in the product's atomic lattice.

See an overview of an earlier version of the stress-induced fabrication process. "I have never seen or heard of this [process] in our extensive interaction with some of the leading material scientists in the world," said Tom Brennan of Chicago-based Arch Venture Partners, speaking in a video about an earlier version of the process. "It allows us to think of completely new material solutions to problems industry is facing across the board."

That earlier version of the pressure-based process worked by using a hand-tightened vise with diamond anvils, but that tool was not rapid or malleable enough for commercial production. Industrial embossing machines, on the other hand, produce sufficient pressure and are controllable. "For a touch-screen, the pressure has to be worked out beforehand to stop the compression at just the right distance from the target: not too far, not too close, to produce the underlying nanowiring for a flat screen," said Fan. "It's a matter of programming the force applied to precisely determine how much to compress."

That is, for flat screens, the nanowires need to be made flexible enough to contact an electrically charged layer of the device when pressed by a finger, yet far enough apart to remain separate when there's no signal.

The technology, recently reported in Nature Communications, can fabricate a wide variety of nanoscale components including nanorods and nanosheets. The components can either be organized during their formation or dispersed in solvents for later assembly. The method could be used for chemical sensors, strain detectors and electrodes in solar cells.

Sandia researcher Hongyou Fan has been appointed a National Laboratory Professor at the University of New Mexico's School of Engineering in its chemical and biological engineering department. The non-tenure-track appointment, which took effect March 1, automatically renews every three years and was made "in recognition of your significant achievements," according to the university's award notification. "I look forward to the opportunities for development of collaborative programs and student mentoring," said Fan.

###

In addition to Fan and Wise, authors of the paper include Kaifu Bian, J. Matthew D. Lane, Gary S. Grest, Tommy Ao and Randy Hickman of Sandia; Zhongwu Wang from Cornell University; and former Sandia post-doctoral fellows Binsong Li and K. Michael Salerno.

The work was supported by the Department of Energy's Office of Science. Part of the work was carried out at the Center for Integrated Nanotechnologies, a DOE Office of Science User Facility run by Sandia and Los Alamos national laboratories.

####

About Sandia National Labratories
Sandia National Laboratories is a multimission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

For more information, please click here

Contacts:
neal singer

505-845-7078

Copyright © Sandia National Labratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Possible Futures

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Sensors

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Energy

Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Industrial

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Research partnerships

Basque researchers turn light upside down February 23rd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Solar/Photovoltaic

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project