Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone

At left, Janus droplets viewed from above. After the droplets encounter their target, a bacterial protein, they clump together (right).

Image: Qifan Zhang
At left, Janus droplets viewed from above. After the droplets encounter their target, a bacterial protein, they clump together (right). Image: Qifan Zhang

Abstract:
The foodborne pathogen Escherichia coli O157 causes an estimated 73,000 illnesses and 60 deaths every year in the United States. Better safety tests could help avoid some of the illnesses caused by this strain of E. coli and other harmful bacteria, according to MIT researchers who have come up with a possible new solution.

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone

Cambridge, MA | Posted on April 7th, 2017

The new MIT test is based on a novel type of liquid droplet that can bind to bacterial proteins. This interaction, which can be detected by either the naked eye or a smartphone, could offer a much faster and cheaper alternative to existing food safety tests.

"It's a brand new way to do sensing," says Timothy Swager, the John D. MacArthur Professor of Chemistry at MIT and the senior author of the study. "What we have here is something that can be massively cheaper, with low entry costs."

Qifan Zhang, an MIT graduate student, is the lead author of the paper, which appears in the journal ACS Central Science. Other authors are Suchol Savagatrup, an MIT postdoc; Peter Seeberger, director of the Max Planck Institute of Colloids and Interfaces in Germany; and Paulina Kaplonek, a graduate student at the Max Planck Institute.

Detecting bacteria

Two years ago, Swager's lab developed a way to easily make complex droplets including droplets called Janus emulsions. These Janus droplets consist of two equally sized hemispheres, one made of a fluorocarbon and one made of a hydrocarbon. Fluorocarbon is denser than hydrocarbon, so when the droplets sit on a surface, the fluorocarbon half is always at the bottom.

The researchers decided to explore using these droplets as sensors because of their unique optical properties. In their natural state, the Janus droplets are transparent when viewed from above, but they appear opaque if viewed from the side, because of the way that light bends as it travels through the droplets.

To turn the droplets into sensors, the researchers designed a surfactant molecule containing mannose sugar to self-assemble at the hydrocarbon-water interface, which makes up the top half of the droplet surface. These molecules can bind to a protein called lectin, which is found on the surface of some strains of E. coli. When E. coli is present, the droplets attach to the proteins and become clumped together. This knocks the particles off balance, so that light hitting them scatters in many directions, and the droplets become opaque when viewed from above.

"We're using the native molecular recognition that these pathogens use. They recognize each other with these weak carbohydrate-lectin binding schemes." Swager says. "We took advantage of the droplets' multivalency to increase the binding affinity, and this is something that is very different than what other sensors are using."

To demonstrate how these droplets could be used for sensing, the researchers placed them into a Petri dish atop a QR code that can be scanned with a smartphone. When E. coli are present, the droplets clump together and the QR code can't be read.

Faster and cheaper

Current food safety testing often involves placing food samples in a culture dish to see if harmful bacterial colonies form, but that process takes two to three days. More rapid techniques based on bacterial DNA amplification or antibody-bacteria interactions are expensive and require special instruments.

The MIT team hopes to adapt its new technology into arrays of small wells, each containing droplets customized to detect a different pathogen and linked to a different QR code. This could enable rapid, inexpensive detection of contamination using only a smartphone.

"The great advantage of our device is you don't need specialized instruments and technical training in order to do this," Zhang says. "That can enable people from the factory, before shipping the food, to scan and test it to make sure it's safe."

The researchers are now working on optimizing the food sample preparation so they can be placed into the wells with the droplets. They also plan to create droplets customized with more complex sugars that would bind to different bacterial proteins. In this paper, the researchers used a sugar that binds to a nonpathogenic type of E. coli, but they expect that they could adapt the sensor to other strains of E. coli and other harmful bacteria.

"You could imagine making really selective droplets to catch different bacteria, based on the sugar we put on them," Savagatrup says.

The researchers are also trying to improve the sensitivity of the sensor, which currently is similar to existing techniques but has the potential to be much greater, they believe. They hope to launch a company to commercialize the technology within the next year and a half.

###

The research was funded by the Abdul Latif Jameel World Water and Food Security Lab (J-WAFS) at MIT, the U.S. Army Research Office through the MIT Institute for Soldier Nanotechnologies, the Legatum Center for Development and Entrepreneurship at MIT, the Alexander von Humboldt Foundation, the Max-Planck Society, and the German Research Foundation.

####

For more information, please click here

Contacts:
Sarah McDonnell

671-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: “Janus Emulsions for the Detection of Bacteria”:

Related News Press

News and information

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Govt.-Legislation/Regulation/Funding/Policy

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

It's not a shock: Better bandage promotes powerful healing November 29th, 2018

French Researchers Extend Reach of Mass Spectrometry with Nanomechanical Resonators: Neutral Mass Spectrometry’ Fills Gap In Existing Weighing Technologies November 27th, 2018

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Possible Futures

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

CEA-Leti’s RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

Sensors

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures December 3rd, 2018

Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance November 30th, 2018

Discoveries

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

Announcements

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

New research could fine-tune the gene scissors CRISPR December 1st, 2018

Military

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Food/Agriculture/Supplements

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

The materials engineers are developing environmentally friendly materials: The materials engineers are developing environmentally friendly materials for producing smart textiles November 2nd, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New research could fine-tune the gene scissors CRISPR December 1st, 2018

Research Pioneers: Five UCSB professors are named Fellows of the American Association for the Advancement of Science November 27th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project