Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Triboelectric Nanogenerators Boost Mass Spectrometry Performance

A proof of concept triboelectric nanogenerator produces electrical charges for a mass spectrometer. Georgia Tech researchers have shown that replacing conventional power supplies with TENG devices for charging the molecules being analyzed can boost the sensitivity of mass spectrometers to unprecedented levels. 

Credit: Rob Felt, Georgia Tech
A proof of concept triboelectric nanogenerator produces electrical charges for a mass spectrometer. Georgia Tech researchers have shown that replacing conventional power supplies with TENG devices for charging the molecules being analyzed can boost the sensitivity of mass spectrometers to unprecedented levels. Credit: Rob Felt, Georgia Tech

Abstract:
Triboelectric nanogenerators convert mechanical energy harvested from the environment to electricity for powering small devices such as sensors or for recharging consumer electronics. Now, researchers have harnessed these devices to improve the charging of molecules in a way that dramatically boosts the sensitivity of a widely-used chemical analysis technique.

Triboelectric Nanogenerators Boost Mass Spectrometry Performance

Atlanta, GA | Posted on March 1st, 2017

Researchers at the Georgia Institute of Technology have shown that replacing conventional power supplies with TENG devices for charging the molecules being analyzed can boost the sensitivity of mass spectrometers to unprecedented levels. The improvement also allows identification to be done with smaller sample volumes, potentially conserving precious biomolecules or chemical mixtures that may be available only in minute quantities.

Though the mechanism by which the enhancement takes place requires more study, the researchers believe the unique aspects of the TENG output - oscillating high voltage and controlled current - allow improvements in the ionization process, increasing the voltage applied without damaging samples or the instrument. The research, which was supported by the National Science Foundation, NASA Astrobiology Program and the Department of Energy, is reported February 27 in the journal Nature Nanotechnology.

"Our discovery is basically a new and very controlled way of putting charge onto molecules," said Facundo Fernández, a professor in Georgia Tech's School of Chemistry and Biochemistry who uses mass spectrometry to study everything from small drug molecules to large proteins. "We know exactly how much charge we produce using these nanogenerators, allowing us to reach sensitivity levels that are unheard-of - at the zeptomole scale. We can measure down to literally hundreds of molecules without tagging."

Fernández and his research team worked with Zhong Lin Wang, a pioneer in developing the TENG technology. Wang, a Regents professor in Georgia Tech's School of Materials Science and Engineering, said the TENGs provide consistent charging levels that produce quantized ion pulses of adjustable duration, polarity and frequency.

"The key here is that the total charge delivered in each cycle is entirely controlled and constant regardless of the speed at which the TENG is triggered," said Wang, who holds the Hightower Chair in the School of Materials Science and Engineering. "This is a new direction for the triboelectric nanogenerators and opens a door for using the technology in the design of future instrumentation and equipment. This research demonstrates another practical impact of TENG technology."

Mass spectrometry measures the mass-to-charge ratio of ions to identify and quantify molecules in both simple and complex mixtures. The technology is used across a broad range of scientific fields and applications, with molecules ranging from small drug compounds on up to large biomolecules. Mass spectrometry is used in biomedicine, food science, homeland security, systems biology, drug discovery and other areas.

But in conventional electrospray mass spec techniques, as much as 99 percent of the sample can be wasted during ionization, said Fernández, who holds the Vasser Woolley Foundation Chair in Bioanalytical Chemistry. That's largely because in conventional systems, the mass analysis process is pulsed or scanned, while the ionization of samples is continuous. The new TENG pulsed power source allows scientists to time the ionization to match what's happening inside the mass spectrometer, specifically within a component known as the mass analyzer.

Beyond improved sensitivity and the ability to analyze very small sample quantities, the new technique also allows ion deposition on surfaces, even non-conducting ones. That's because the oscillating ionization produces a sequence of alternating positive and negative charges, producing a net neutral surface, Fernández said.

Mass spectrometers require large amounts of power for creating the vacuum essential to measuring the mass-to-charge ratio of each molecule. While it's possible that future TENG devices could power an entire miniature mass spectrometer, the TENG devices are now used just to ionize samples.

"The nanogenerators could eliminate a big chunk of the mass spectrometer system because they wouldn't need a more powerful device for making the ions," Fernández said. "This could be particularly applicable to conditions that are extreme and harsh, such as on a battlefield or in space, where you would need a very robust and self-contained unit."

Triboelectric nanogenerators, developed by Wang in 2012, use a combination of the triboelectric effect and electrostatic induction to generate small amounts of electrical power from mechanical motion such as rotation, sliding or vibration. The triboelectric effect takes advantage of the fact that certain materials become electrically charged after they come into moving contact with a surface made from a different material. Wang and his research team have developed TENGs with four different working modes, including a rotating disc that may be ideal for high throughput mass spectrometry experiments. This paper is the first publication about an application of TENG to an advanced instrument.

Wang's team has measured voltage levels at the mass spec ionizer of between 6,000 and 8,000 volts. Standard ionizers normally operate at less than 1,500 volts. The technology has been used with both electrospray ionization and plasma discharge ionization, with the flexibility of generating single polarity or alternating polarity ion pulses.

"Because the voltage from these nanogenerators is high, we believe that the size of the sample droplets can be much smaller than with the conventional way of making ions," Fernández said. "That increases the ion generation efficiency. We are operating in a completely different electrospray regime, and it could completely change the way this technology is used."

The TENG technology could be retrofitted to existing mass spectrometers, as Fernández has already done in his lab. With publication of the journal article, he hopes other labs will start exploring use of the TENG devices in mass spectrometry and other areas. "I see potential not only in analytical chemistry, but also in synthesis, electrochemistry and other areas that require a controlled way of producing electrical charges," Fernández said.

The research was initiated by postdoctoral fellows in the two laboratory groups, Anyin Li and Yunlong Zi. "This project really shows how innovation can happen at the boundaries between different disciplines when scientists are free to pursue new ideas," Fernández added.

###

This work was jointly supported by NSF and the NASA Astrobiology Program, under the NSF Center for Chemical Evolution, CHE-1504217. Research was also supported by the U.S. Department of Energy, Office of Energy Sciences (Award DE-FG02-07ER46394), and the National Science Foundation (DMR-1505319). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors.

####

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

CITATION: Anyin Li, Yunlong Zi, Hengyu Guo, Zhong Lin Wang, Facundo M. Fernández, "Triboelectric Nanogenerators for Sensitive Nano-Coulomb Molecular Mass Spectrometry," (Nature Nanotechnology, 2016):

Related News Press

News and information

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Videos/Movies

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

Chemistry

Development of cost-efficient electrocatalyst for hydrogen production: Development of a highly efficient and durable electrocatalyst for water electrolysis that will lead to cost-efficient hydrogen production. Trace amounts of titanium doping on low-cost molybdenum phosphide resu October 9th, 2020

High-performance single-atom catalysts for high-temperature fuel cells: Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate the commerciali September 25th, 2020

Govt.-Legislation/Regulation/Funding/Policy

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

New NIST project to build nano-thermometers could revolutionize temperature imaging: Cheaper refrigerators? Stronger hip implants? A better understanding of human disease? All of these could be possible October 9th, 2020

Graphene detector reveals THz light's polarization October 8th, 2020

Multi-institutional team extracts more energy from sunlight with advanced solar panels October 6th, 2020

Discoveries

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Announcements

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GLOBALFOUNDRIES Accelerating Innovation in IoT and Wearables with Adaptive Body Bias Feature on 22FDX Platform October 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Making disorder for an ideal battery: Manufacturing safer, more powerful batteries that use geopolitically stable resources requires solid electrolytes and replacing lithium with sodium. A chemical solution is now being offered to battery developers. October 16th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Aerospace/Space

Multi-institutional team extracts more energy from sunlight with advanced solar panels October 6th, 2020

NSS Webinar Wednesday, September 30, 1:00 p.m. ET September 29th, 2020

Why NASA Wants to Buy More Moon Rocks:  A Small Announcement May Have Large Consequences for Space Development September 15th, 2020

Nano-diamond self-charging batteries could disrupt energy as we know it August 25th, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Making disorder for an ideal battery: Manufacturing safer, more powerful batteries that use geopolitically stable resources requires solid electrolytes and replacing lithium with sodium. A chemical solution is now being offered to battery developers. October 16th, 2020

Fast calculation dials in better batteries: Analytical model from Rice University helps researchers fine-tune battery performance September 16th, 2020

Boundaries no barrier for thermoelectricity: Rice researchers find potentially useful electrical phenomenon in gold nanowires September 8th, 2020

Battery-free Game Boy runs forever: Button pressing and solar energy power the retro gaming device September 4th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project