Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules

The molecules tryptophan, left, and decyltrimethylammonium bromide, right, over their SABERS maps. SABERS, a new analysis method developed at Rice University, is able to obtain structural details of molecules in lipid membranes near gold nanoparticles without molecular tags. Credit: Hafner Lab/Rice University
The molecules tryptophan, left, and decyltrimethylammonium bromide, right, over their SABERS maps. SABERS, a new analysis method developed at Rice University, is able to obtain structural details of molecules in lipid membranes near gold nanoparticles without molecular tags.

Credit: Hafner Lab/Rice University

Abstract:
Five years of hard work and a little "cosmic luck" led Rice University researchers to a new method to obtain structural details on molecules in biomembranes.

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules

Houston, TX | Posted on February 15th, 2017

The method by the Rice lab of physicist Jason Hafner combines experimental and computational techniques and relies on the plasmonic properties of gold nanoparticles. It takes advantage of the nanoparticles' unique ability to focus light on very small targets.

The researchers call their protocol SABERS, for structural analysis by enhanced Raman scattering, and say it could help scientists who study amyloid interactions implicated in neurodegenerative disease, the neuroprotective actions of fatty acids and the function of chemotherapy agents.

The details appear this month in the American Chemical Society journal Nano Letters.

Their method extracts the location of specific chemical groups within the molecules by locating their characteristic vibrations. When a laser activates plasmons in the nanoparticles, it amplifies vibrationally scattered light from nearby molecules, a phenomenon called surface-enhanced Raman scattering (SERS). The enhancement is sensitive to exactly where the molecule sits relative to the nanoparticle.

"Molecules can vibrate in many different ways, so we have to assign a 'center of vibration' to each one," Hafner said. "If you watch some part of a molecule vibrating, you can visualize where it occurs, but we also had to find a mathematical way to describe it."

SERS spectra are notoriously difficult to untangle, so the full SABERS method also requires unenhanced spectral measurements and theoretical calculations of both the nanorod optics and the molecular properties, he said.

Hafner and his team tested their technique on three structures: surfactant molecules that come with gold nanorods, lipid molecules that form membranes on gold nanorods and tryptophan, an amino acid that settles into the membrane.

"We found that the surfactant layer is tilted by 25 degrees, which is interesting because it explains why other measurements found that the layer appears thinner than expected," Hafner said.

Lipids easily replace surfactants on nanorods since they end in the same chemical structure. By comparing vibrations of that structure in the lipid headgroup to a double bond in the tail, SABERS found the correct orientation and thickness of the lipid bilayer membrane. "It's just cosmic luck that a lipid ends in a perfectly symmetric structure that vibrates and is Raman active and loves to sit on a nanorod," Hafner said.

The researchers also used SABERS to locate tryptophan in the lipid bilayer. "It's very bright, spectroscopically, and easy to see," he said. "In real biological structures, tryptophan is just a small residue attached to a much larger protein. However, tryptophan helps anchor the protein to the membrane, so researchers want to know where it prefers to sit."

Next, Hafner wants to analyze bigger molecules. "In principle, through spectroscopic tricks, we could take this to larger structures, and perhaps even find every residue in a protein to get the whole structure. That's futuristic, but it's where we think we can go with it," he said.

Rice alumnus James Matthews, now a software engineer at Schlumberger, is lead author of the paper. Co-authors are Rice undergraduate students Cyna Shirazinejad and Grace Isakson and graduate student Steven Demers. Hafner is a professor of physics and astronomy and of chemistry.

The Robert A. Welch Foundation and Lockheed Martin supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Hafner Lab:

Rice Physics and Astronomy Department:

Wiess School of Natural Sciences:

Related News Press

News and information

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Cancer

Sharks with frickin' lasers: Gold nanoparticles fry cancer on glowing mice August 31st, 2017

University of Virginia Cancer Center and Keystone Nano Announce Start of Clinical Testing of Ceramide Nanoliposome for Treatment of Solid Tumors August 28th, 2017

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Possible Futures

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Discoveries

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Announcements

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

Quantum detectives in the hunt for the world's first quantum computer September 8th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

A more complete picture of the nano world August 24th, 2017

Nanobiotechnology

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project