Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened?

Trapped Ytterbium ions were used as one of the most advanced laboratory quantum systems for this study. Professor Biercuk's research laboratories are now located in the Sydney Nanoscience Hub, after six years as a visiting scientist at the National Measurement Institute.
CREDIT
University of Sydney.
Trapped Ytterbium ions were used as one of the most advanced laboratory quantum systems for this study. Professor Biercuk's research laboratories are now located in the Sydney Nanoscience Hub, after six years as a visiting scientist at the National Measurement Institute. CREDIT University of Sydney.

Abstract:
Scientists at the University of Sydney have demonstrated the ability to "see" the future of quantum systems, and used that knowledge to preempt their demise, in a major achievement that could help bring the strange and powerful world of quantum technology closer to reality.

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened?

Sydney, Australia | Posted on January 16th, 2017

The applications of quantum-enabled technologies are compelling and already demonstrating significant impacts - especially in the realm of sensing and metrology. And the potential to build exceptionally powerful quantum computers using quantum bits, or qubits, is driving investment from the world's largest companies.

However a significant obstacle to building reliable quantum technologies has been the randomisation of quantum systems by their environments, or decoherence, which effectively destroys the useful quantum character.

The physicists have taken a technical quantum leap in addressing this, using techniques from big data to predict how quantum systems will change and then preventing the system's breakdown from occurring.

The research is published today in Nature Communications.

"Much the way the individual components in mobile phones will eventually fail, so too do quantum systems," said the paper's senior author Professor Michael J. Biercuk.

"But in quantum technology the lifetime is generally measured in fractions of a second, rather than years."

Professor Biercuk, from the University of Sydney's School of Physics and a chief investigator at the Australian Research Council's Centre for Engineered Quantum Systems, said his group had demonstrated it was possible to suppress decoherence in a preventive manner. The key was to develop a technique to predict how the system would disintegrate.

Professor Biercuk highlighted the challenges of making predictions in a quantum world: "Humans routinely employ predictive techniques in our daily experience; for instance, when we play tennis we predict where the ball will end up based on observations of the airborne ball," he said.

"This works because the rules that govern how the ball will move, like gravity, are regular and known. But what if the rules changed randomly while the ball was on its way to you? In that case it's next to impossible to predict the future behavior of that ball.

"And yet this situation is exactly what we had to deal with because the disintegration of quantum systems is random. Moreover, in the quantum realm observation erases quantumness, so our team needed to be able to guess how and when the system would randomly break.

"We effectively needed to swing at the randomly moving tennis ball while blindfolded."

The team turned to machine learning for help in keeping their quantum systems - qubits realised in trapped atoms - from breaking.

What might look like random behavior actually contained enough information for a computer program to guess how the system would change in the future. It could then predict the future without direct observation, which would otherwise erase the system's useful characteristics.

The predictions were remarkably accurate, allowing the team to use their guesses preemptively to compensate for the anticipated changes.

Doing this in real time allowed the team to prevent the disintegration of the quantum character, extending the useful lifetime of the qubits.

"We know that building real quantum technologies will require major advances in our ability to control and stabilise qubits - to make them useful in applications," Professor Biercuk said.

Our techniques apply to any qubit, built in any technology, including the special superconducting circuits being used by major corporations.

"We're excited to be developing new capabilities that turn quantum systems from novelties into useful technologies. The quantum future is looking better all the time," Professor Biercuk said.

####

For more information, please click here

Contacts:
Vivienne Reiner

61-438-021-390

Copyright © University of Sydney

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Quantum Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project