Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New laser based on unusual physics phenomenon could improve telecommunications, computing

This is a schematic of the BIC laser: a high frequency laser beam (blue) powers the membrane to emit a laser beam at telecommunication frequency (red).
CREDIT
Kanté group, UC San Diego
This is a schematic of the BIC laser: a high frequency laser beam (blue) powers the membrane to emit a laser beam at telecommunication frequency (red). CREDIT Kanté group, UC San Diego

Abstract:
Researchers at the University of California San Diego have demonstrated the world's first laser based on an unconventional wave physics phenomenon called bound states in the continuum. The technology could revolutionize the development of surface lasers, making them more compact and energy-efficient for communications and computing applications. The new BIC lasers could also be developed as high-power lasers for industrial and defense applications.

New laser based on unusual physics phenomenon could improve telecommunications, computing

San Diego, CA | Posted on January 12th, 2017

"Lasers are ubiquitous in the present day world, from simple everyday laser pointers to complex laser interferometers used to detect gravitational waves. Our current research will impact many areas of laser applications," said Ashok Kodigala, an electrical engineering Ph.D. student at UC San Diego and first author of the study.

"Because they are unconventional, BIC lasers offer unique and unprecedented properties that haven't yet been realized with existing laser technologies," said Boubacar Kanté, electrical engineering professor at the UC San Diego Jacobs School of Engineering who led the research.

For example, BIC lasers can be readily tuned to emit beams of different wavelengths, a useful feature for medical lasers made to precisely target cancer cells without damaging normal tissue. BIC lasers can also be made to emit beams with specially engineered shapes (spiral, donut or bell curve) -- called vector beams -- which could enable increasingly powerful computers and optical communication systems that can carry up to 10 times more information than existing ones.

"Light sources are key components of optical data communications technology in cell phones, computers and astronomy, for example. In this work, we present a new kind of light source that is more efficient than what's available today in terms of power consumption and speed," said Babak Bahari, an electrical engineering Ph.D. student in Kanté's lab and a co-author of the study.

Bound states in the continuum (BICs) are phenomena that have been predicted to exist since 1929. BICs are waves that remain perfectly confined, or bound, in an open system. Conventional waves in an open system escape, but BICs defy this norm -- they stay localized and do not escape despite having open pathways to do so.

In a previous study, Kanté and his team demonstrated, at microwave frequencies, that BICs could be used to efficiently trap and store light to enable strong light-matter interaction. Now, they're harnessing BICs to demonstrate new types of lasers. The team published the work Jan. 12 in Nature.

Making the BIC laser

The BIC laser in this work is constructed from a thin semiconductor membrane made of indium, gallium, arsenic and phosphorus. The membrane is structured as an array of nano-sized cylinders suspended in air. The cylinders are interconnected by a network of supporting bridges, which provide mechanical stability to the device.

By powering the membrane with a high frequency laser beam, researchers induced the BIC system to emit its own lower frequency laser beam (at telecommunication frequency).

"Right now, this is a proof of concept demonstration that we can indeed achieve lasing action with BICs," Kanté said.

"And what's remarkable is that we can get surface lasing to occur with arrays as small as 8 × 8 particles," he said. In comparison, the surface lasers that are widely used in data communications and high-precision sensing, called VCSELs (vertical-cavity surface-emitting lasers), need much larger (100 times) arrays -- and thus more power -- to achieve lasing.

"The popular VCSEL may one day be replaced by what we're calling the 'BICSEL' -- bound state in the continuum surface-emitting laser, which could lead to smaller devices that consume less power," Kanté said. The team has filed a patent for the new type of light source.

The array can also be scaled up in size to create high power lasers for industrial and defense applications, he noted. "A fundamental challenge in high power lasers is heating and with the predicted efficiencies of our BIC lasers, a new era of laser technologies may become possible," Kanté said.

The team's next step is to make BIC lasers that are electrically powered, rather than optically powered by another laser. "An electrically pumped laser is easily portable outside the lab and can run off a conventional battery source," Kanté said.

This research was supported by a National Science Foundation Career Award (ECCS-1554021), the Office of Naval Research Multi-University Research Initiative (N000014-13-1-0678) and UC San Diego.

####

For more information, please click here

Contacts:
Liezel Labios

858-246-1124

Copyright © University of California, San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full paper: "Lasing action from photonic bound states in continuum." Authors of the study are: Ashok Kodigala*, Thomas Lepetit*, Qing Gu*, Babak Bahari, Yeshaiahu Fainman and Boubacar Kanté of UC San Diego.

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Optical computing/Photonic computing

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project