Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943

This is a simplified representation of the 2-D magnetic phase transition.
CREDIT
IBS
This is a simplified representation of the 2-D magnetic phase transition. CREDIT IBS

Abstract:
PARK Je-Geun, Associate Director at the Center for Correlated Electron Systems, within the Institute for Basic Science (IBS), working in collaboration with CHEONG Hyeonsik at Sogang University and PARK Cheol-Hwan at Seoul National University demonstrated the magnetic behavior of a special class of 2D materials. This is the first experimental proof to a theory proposed more than 70 years ago. The paper, describing the experiment, is published in the journal Nano Letters.

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943

Daejeon, Korea | Posted on January 6th, 2017

Recently, scientists all over the world are investigating the properties and applications of extremely thin 2D materials, just one-atom-thick, like graphene. Studying the properties of 2D materials in comparison with their 3D counterparts raises many thought-provoking questions; one of them concerns magnetic phase transitions.

Some materials are magnetic because of the behavior of the spins of their electrons. In simple terms, spins (spin quantum numbers, or more precisely their associated magnetic moments), are just like tiny magnets, conventionally shown as arrows. At extremely low temperatures, these spins tend to align, lowering the electrons' total energy. However, above a specific temperature that varies from material to material, spins lose their alignment and become randomly oriented. Similar to how ice loses its internal order and becomes liquid above a certain temperature; 3D magnets also lose their magnetization above a critical temperature. This is called phase transition and is an ever-present process in 3D objects.

However, what happens to 1D and 2D systems at low temperatures? Do they experience a phase transition? In other words, are we going to see a transition from solid to liquid in a chain of water molecules (1D) or in a one-atom thick sheet of water (2D)?

About one century ago, the physicist Wilhelm Lenz asked his student Ernst Ising to solve this problem for 1D systems. Ising explained it in 1925 and concluded that 1D materials do not have phase transitions. Then, Ising tried to grapple with the same question for a particular type of 2D materials. The problem turned out to be much harder. The solution came in 1943 courtesy of Lars Onsager, who received the Nobel Prize for Chemistry in 1968. Indeed, Onsager found that the materials, which follow the Ising spin model, have a phase transition. However, despite the huge importance this theory has in the following development of the whole physics of phase transitions, it has never been tested experimentally using a real magnetic material. "The physics of 2D systems is unique and exciting. The Onsager solution is taught on every advanced statistical mechanics course. That's where I learned this problem. However, when I discovered much later that it has not been tested experimentally with a magnetic material, I thought it was a shame for experimentalists like me, so it was natural for me to look for a real material to test it," explains PARK Je-Geun.

In order to prove the Onsager model, the research team produced crystals of iron trithiohypophosphate (FePS3) with a technique called chemical vapour transport. The crystals are made of layers bound by weak interactions, known as Van der Waals interactions. Layers can be peeled off from the crystal by using scotch tape, in the same way tape can strip paint from a wall. The scientists peeled the layers until they were left with just one layer of FePS3 (2D). "We can call these materials magnetic Van der Waals materials or magnetic graphene: they are magnetic and they have easy-to-cleave Van der Waals bonds between layers. They are very rare, and their physics is still unexplored," says the professor.

While there are several methods to measure the magnetic properties of bulk 3D materials, these techniques have no practical use to measure magnetic signals coming from monolayer materials. Therefore, the team used Raman spectroscopy, a technique normally used to measure vibrations inside the material. They used vibrations as an indirect measure of magnetism, the more vibrations, the less magnetization.

Park's team and colleagues first used Raman spectroscopy on bulk 3D FePS3 material at different temperatures and then tested FePS3 2D monolayer. "The test with the bulk sample showed us that the Raman signals can be used as a kind of the fingerprint of phase transition at temperatures around 118 Kelvin, or minus 155 degrees Celsius. With this confirmation we then measured the monolayer sample and found the same patterns," points out Park. "We conclude that 3D and 2D FePS3 have the same signature of the phase transition visible in the Raman spectrum." Both in the bulk sample and the monolayer, FePS3' spins are ordered (antiferromagnetic) at very low temperatures, and become disordered (paramagnetic) above 118 degrees Kelvin. "Showing magnetic phase transition with this tour-de-force experiment is a beautiful test for the Onsager solution," concludes the physicist.

In the future, the team would like to study other 2D transition metal materials, going beyond the 2D Ising spin model.

####

For more information, please click here

Contacts:
Dahee Carol Kim

Copyright © Institute for Basic Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

2 Dimensional Materials

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Magnetism

Graphene controls surface magnetism at room temperature October 8th, 2018

The nanoscience of ferroelectric and ferromagnetic domains converges on Barcelona September 27th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Physics

Searching for errors in the quantum world September 21st, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Possible Futures

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Iranian Firm Offering Nano-Products on Chinese Market October 16th, 2018

Spintronics

Graphene controls surface magnetism at room temperature October 8th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

A colossal breakthrough for topological spintronics: BiSb expands the potential of topological insulators for ultra-low-power electronic devices August 2nd, 2018

Chip Technology

Nanometrics to Announce Third Quarter Financial Results on October 30, 2018 October 10th, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound October 2nd, 2018

Machine learning helps improving photonic applications September 28th, 2018

Quantum Computing

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Discoveries

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Announcements

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Arrowhead Pharmaceuticals Hosts R&D Day on Pipeline of RNAi Therapeutics October 17th, 2018

Iran Produces Cooling Fabrics Using Nanotechnology October 17th, 2018

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Quantum nanoscience

Quantum mechanics work lets oil industry know promise of recovery experiments September 28th, 2018

September 5th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project