Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New material with ferroelectricity and ferromagnetism may lead to better computer memory

Portions of the BiFeO3 lattice of cycloidal and collinear phases with only Fe ions are shown at left and right, respectively. The arrows indicate the Fe3+ moment direction. The ground state of BiFeO3 had a cycloidal spin structure, which is destabilized by substitution of Co for Fe and at higher temperatures. The spin magnetic moments compensate with each other in the left panel, but canting between neighboring spins leads to the appearance of weak ferromagnetism in the left panel.
CREDIT
Tokyo Institute of Technology
Portions of the BiFeO3 lattice of cycloidal and collinear phases with only Fe ions are shown at left and right, respectively. The arrows indicate the Fe3+ moment direction. The ground state of BiFeO3 had a cycloidal spin structure, which is destabilized by substitution of Co for Fe and at higher temperatures. The spin magnetic moments compensate with each other in the left panel, but canting between neighboring spins leads to the appearance of weak ferromagnetism in the left panel. CREDIT Tokyo Institute of Technology

Abstract:
Traditional computer memory, known as DRAM, uses electric fields to store information. In DRAM, the presence or absence of an electric charge is indicated either by number 1 or number 0. Unfortunately, this type of information storage is transient and information is lost when the computer is turned off. Newer types of memory, MRAM and FRAM, use long-lasting ferromagnetism and ferroelectricity to store information. However, no technology thus far combines the two.

New material with ferroelectricity and ferromagnetism may lead to better computer memory

Tokyo, Japan | Posted on December 21st, 2016

To address this challenge, a group of scientists led by Prof. Masaki Azuma from the Laboratory for Materials and Structures at Tokyo Institute of Technology, along with associate Prof. Hajime Hojo at Kyushu University previously at Tokyo Tech, Prof. Ko Mibu at Nagoya Institute of Technology and five other researchers demonstrated the multiferroic nature of a thin film of BiFe1?xCoxO3 (BFCO). Multiferroic materials exhibit both ferromagnetism and ferroelectricity. These are expected to be used as multiple-state memory devices. Furthermore, if the two orders are strongly coupled and the magnetization can be reversed by applying an external electric field, the material should work as a form of low power consumption magnetic memory.

Previous scientists had speculated that ferroelectric BFO thin film, a close relative of BFCO, might be ferromagnetic as well, but they were thwarted by the presence of magnetic impurity. Prof. M. Azuma's team successfully synthesized pure, thin films of BFCO by using pulsed laser deposition to perform epitaxial growth on a SrTiO3 (STO) substrate. They then conducted a series of tests to show that BFCO is both ferroelectric and ferromagnetic at room temperature. They manipulated the direction of ferroelectric polarization by applying an electric field, and showed that the low-temperature cychloidal spin structure, essentially the same as that of BiFeO3, changes to a collinear one with ferromagnetism at room temperature.

In the future, the scientists hope to realize electrical control of ferromagnetism, which could be applied in low power consumption, non-volatile memory devices.

####

For more information, please click here

Contacts:
Emiko Kawaguchi

81-357-342-975

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Magnetism

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Portable superconductivity systems for small motors: Cambridge University lab achieves a breakthrough for portable superconductivity systems that are applicable for small motors, health care and other uses February 8th, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Thin films

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Possible Futures

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Chip Technology

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Memory Technology

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Discoveries

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Announcements

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project