Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fast, efficient sperm tails inspire nanobiotechnology

Graphic depicts the tethered enzymes and free-floating enzymes.
CREDIT
Cornell University
Graphic depicts the tethered enzymes and free-floating enzymes. CREDIT Cornell University

Abstract:
Just like workers in a factory, enzymes can create a final product more efficiently if they are stuck together in one place and pass the raw material from enzyme to enzyme, assembly line-style. That's according to scientists at Cornell's Baker Institute for Animal Health, the first team to recreate a 10-step biological pathway with all the enzymes tethered to nanoparticles.

Fast, efficient sperm tails inspire nanobiotechnology

Ithaca, NY | Posted on December 5th, 2016

They were inspired to study how nanoparticles could gain biological functions through the enzymes that drive sperm tails, which turn sugar into lactate and energy so quickly that sperm can speed along at five body lengths per second.

"Sperm have a highly efficient energy-producing system," said the study's lead author, Chinatsu Mukai, a postdoctoral research associate. In the Baker Institute laboratory of Alex Travis, associate professor of reproductive biology, Mukai and others had been studying metabolism and sperm function. Travis had the idea to mimic the way sperm tail enzymes are attached to a solid support in an attempt to achieve the same sort of efficiency on small man-made devices. The study was supported by a Pioneer Grant from the National Institutes of Health and published in the journal Angewandte Chemie Nov. 30.

In most cells, the majority of enzymes that carry out the process of turning sugar into energy, called glycolysis, are floating around, picking up the molecules they work on as they happen along. But in sperm, the enzymes that carry out glycolysis have special regions that attach the enzymes to a solid protein scaffold that lies just beneath the membrane covering the cell and runs most of the length of the tail.

"Sugar comes in through the membrane, hits the enzymes immediately underneath, and then is processed and passed down the line, giving energy production in a high-throughput fashion," said Travis.

The system Mukai, Travis and their team developed works in much the same way: The sugar molecule is processed from start to finish by enzymes attached to nanoparticles. Compared with enzymes floating free in solution, the tethered enzyme system processed glucose to the end product, lactate, more efficiently, leaving lower concentrations of intermediate products than the free-floating enzyme system. Getting a 10-step pathway to function with all the components tethered is an exponential increase over previous studies, which reported a maximum of two to three steps.

If the work can be enhanced to be a net producer of energy, there could be a number of practical applications, Travis said. In sperm, the energy is used for swimming and the signaling that allows it to fertilize an egg, but in nanobiotechnology, the energy could be used to power devices that carry out a variety of jobs.

"Imagine devices the size of blood cells, each holding a chemotherapy drug. If outfitted with this kind of engine, then the devices could make their own energy from sugar in the bloodstream. Using molecular pumps powered by that energy, the devices could kick out that drug cargo at defined rates, and specifically where it's needed, such as at the site of a solid tumor," said Travis. His team has already applied the concept of tethered enzymes in a device to detect signs of stroke or traumatic brain injury in blood samples, a technology that he and his lab are planning to commercialize.

It may even represent a step closer to realizing the potential of artificial cells, said Mukai.

"You can't make an artificial cell without metabolic pathways, so this is progress in that direction," she said.

####

For more information, please click here

Contacts:
Melissa Osgood

607-255-2059

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Synthetic Biology

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Possible Futures

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Nanomedicine

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Discoveries

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Nanobiotechnology

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project