Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Throwing new light on printed organic solar cells

Abstract:
•Research from the University of Surrey reveals scientists are able to improve the efficiency of solar cells more than threefold
•The solar cells are a flexible, lightweight and environmentally-friendly and have the capacity to be printed in different colours and shapes
•The solar cells are a contrast to their inorganic competitors as they also convert efficiently indirect sunlight, making them ideal material to power devices on the move, such as for the Internet of Things

Throwing new light on printed organic solar cells

Guildford, UK | Posted on December 1st, 2016

Researchers at the University of Surrey have achieved record power conversion efficiencies for large area organic solar cells. In recent years scientists have been attempting to increase the efficiency of these cells to allow commercial applications such as integration into a building's glass façade, generating electricity to power the building.

The research was led by the University of Surrey's Advanced Technology Institute (ATI) in collaboration with Oxford University, Aristotle University of Thessaloniki (Greece), and University of Stuttgart (Germany). The project is part of SMARTONICS, a four-year European Commission FP7 programme aimed at developing large-scale pilot lines for the fabrication and printing of organic polymer solar cells.

The results, published in Advanced Electronic Materials, demonstrate that dependencies between the chemical and physical properties of the photoactive layer's building blocks within organic solar cells determine the efficiency of these solar cells. By using a well-known and low cost electron donating material (P3HT) in combination with an electron accepting material (ICBA) for the photosensitive layer of the organic solar cells, the research team discovered that different ICBA samples consist of dissimilar isomeric mixtures (isomers are molecules with the same number of atoms of each element, but with the atoms differently arranged). These characteristics are critical for the formation kinetics and spatial arrangement of P3HT and ICBA in their photosensitive blend and lead to varying power conversion efficiencies.

Tailoring the fabrication process based on these findings, the research team were able to improve the efficiency of their solar cells from 2.2% up to 6.7%. This is one of the highest efficiencies to have been reported for P3HT blends on a large-area device.

Professor Ravi Silva, corresponding author and Director of the ATI commented, "Solar cells made of organic materials have a number of benefits over traditional inorganic solar cells - and more so when the organic is P3HT, the fruit fly for organic solar cells. Not only are they flexible, lightweight and environmentally-friendly, they are also design-friendly because they can be semi-transparent and printed in different colours and shapes. In addition, in contrast to their inorganic competitors, they convert efficiently indirect sunlight, which makes them an ideal material to power devices on the move, such as for the Internet of Things. Our group is looking to expand research in this field, with more PhD students and researchers, which will have such a positive impact on society."

PhD student Dimitar Kutsarov, the paper's lead author, said, "The research represents a significant step forward in the understanding of the characteristics of materials with isomeric properties, which will lead to a future improvement of the efficiency of organic solar cells. We know now how important the spatial arrangement of the isomeric molecules is and will, therefore, be able to push the efficiency of P3HT-based solar cells further. Our findings will be used for the fabrication of meters long organic solar cells as part of the successful completion of the collaborative European project SMARTONICS."

####

For more information, please click here

Contacts:
Peter La

44-148-368-9191

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Organic Electronics

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells July 12th, 2017

Internet-of-Things

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Possible Futures

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Discoveries

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Energy

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Solar/Photovoltaic

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project