Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Throwing new light on printed organic solar cells

Abstract:
•Research from the University of Surrey reveals scientists are able to improve the efficiency of solar cells more than threefold
•The solar cells are a flexible, lightweight and environmentally-friendly and have the capacity to be printed in different colours and shapes
•The solar cells are a contrast to their inorganic competitors as they also convert efficiently indirect sunlight, making them ideal material to power devices on the move, such as for the Internet of Things

Throwing new light on printed organic solar cells

Guildford, UK | Posted on December 1st, 2016

Researchers at the University of Surrey have achieved record power conversion efficiencies for large area organic solar cells. In recent years scientists have been attempting to increase the efficiency of these cells to allow commercial applications such as integration into a building's glass façade, generating electricity to power the building.

The research was led by the University of Surrey's Advanced Technology Institute (ATI) in collaboration with Oxford University, Aristotle University of Thessaloniki (Greece), and University of Stuttgart (Germany). The project is part of SMARTONICS, a four-year European Commission FP7 programme aimed at developing large-scale pilot lines for the fabrication and printing of organic polymer solar cells.

The results, published in Advanced Electronic Materials, demonstrate that dependencies between the chemical and physical properties of the photoactive layer's building blocks within organic solar cells determine the efficiency of these solar cells. By using a well-known and low cost electron donating material (P3HT) in combination with an electron accepting material (ICBA) for the photosensitive layer of the organic solar cells, the research team discovered that different ICBA samples consist of dissimilar isomeric mixtures (isomers are molecules with the same number of atoms of each element, but with the atoms differently arranged). These characteristics are critical for the formation kinetics and spatial arrangement of P3HT and ICBA in their photosensitive blend and lead to varying power conversion efficiencies.

Tailoring the fabrication process based on these findings, the research team were able to improve the efficiency of their solar cells from 2.2% up to 6.7%. This is one of the highest efficiencies to have been reported for P3HT blends on a large-area device.

Professor Ravi Silva, corresponding author and Director of the ATI commented, "Solar cells made of organic materials have a number of benefits over traditional inorganic solar cells - and more so when the organic is P3HT, the fruit fly for organic solar cells. Not only are they flexible, lightweight and environmentally-friendly, they are also design-friendly because they can be semi-transparent and printed in different colours and shapes. In addition, in contrast to their inorganic competitors, they convert efficiently indirect sunlight, which makes them an ideal material to power devices on the move, such as for the Internet of Things. Our group is looking to expand research in this field, with more PhD students and researchers, which will have such a positive impact on society."

PhD student Dimitar Kutsarov, the paper's lead author, said, "The research represents a significant step forward in the understanding of the characteristics of materials with isomeric properties, which will lead to a future improvement of the efficiency of organic solar cells. We know now how important the spatial arrangement of the isomeric molecules is and will, therefore, be able to push the efficiency of P3HT-based solar cells further. Our findings will be used for the fabrication of meters long organic solar cells as part of the successful completion of the collaborative European project SMARTONICS."

####

For more information, please click here

Contacts:
Peter La

44-148-368-9191

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Internet-of-Things

Leti to Release Versatile SensiNact IoT Platform for Open-Source Development: Middleware Collects, Aggregates and Secures Scripting of Data From Multiple Devices via Virtually Any IoT Communication Protocol March 14th, 2017

GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore February 10th, 2017

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors January 10th, 2017

Imec and Holst Centre Introduce World’s First Solid-State Multi-Ion Sensor for Internet-of-Things Applications December 13th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Organic Electronics

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Possible Futures

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Discoveries

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Announcements

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Energy

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Solar/Photovoltaic

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project