Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > An Archimedes' screw for groups of quantum particles

Abstract:
Anyone who has tried to lead a group of tourists through a busy city knows the problem. How do you keep the group together when they are constantly jostled, held up and distracted by the hubbub around them?

An Archimedes' screw for groups of quantum particles

Singapore | Posted on November 19th, 2016

It's a problem the designers of quantum computers have to tackle. In some future quantum computers, information will be encoded in the delicate quantum states of groups of particles. These face jostling by noise and disorder within the materials of the processor. Now, an international team has proposed a scheme that could help protect groups of particles and enable them to move together without any getting lost or held up.

The proposal, published 17 November in Physical Review Letters, comes from researchers at the National University of Singapore (NUS), Technical University of Crete, University of Oxford and Google. Their paper puts forward a scheme that can reliably transport quantum states of a few photons along a line of miniature quantum circuits. Simulations show that it should efficiently move a three-photon state from one circuit site to the next over dozens of sites: the particles jump together throughout and finally appear at the other end undisturbed, with no spreading out.

The scheme is based on the ideas of physicist David J. Thouless, who won half the 2016 Nobel Prize in physics for his work on topological effects in materials. Topological effects are to do with geometry, and their use in quantum computing can help protect fragile quantum states during processing.

One of Thouless' major contributions was the invention of 'topological pumping'. This works something like Archimedes' screw pump for water. The Ancient Greek's screw spins around, but the water within it travels in a straight line up a hill. "Even though the motion of the machine is cyclical, the motion of the particles is not, they move in a line," explains Jirawat Tangpanitanon, first author on the paper and a PhD student in the group of Dimitris Angelakis at the Centre for Quantum Technologies (CQT) at NUS.

In the quantum scheme, the screw thread is not a physical structure but an oscillating external field imposed on the particles by electronic control over the device that contains them.

Angelakis started his group looking into topological pumping after others in 2015 demonstrated the effect for individual, non-interacting, particles. Angelakis, Tangpanitanon and Research Fellow Victor Bastidas wanted to find out if it would be possible to move groups of particles coherently too.

The answer is yes. What's more, unlike Archimedes' pump, which can only move water one way, the quantum particles can even be sent into reverse by changing the initial conditions. "It's like a moonwalk," jokes Tangpanitanon. It looks like everything should be moving forward, but instead the particles go backwards due to quantum effects.

Co-author Pedram Roushan - part of the Google group in Santa Barbara, California building superconducting circuits for quantum computing - and the team hopes to see the idea implemented in similar hardware. "This paper is almost a blueprint. We developed the proposal to match existing devices," says Angelakis, who is a Principal Investigator at CQT and a faculty member at the Technical University of Crete.

This research is supported by Singapore Ministry of Education Academic Research Fund Tier 3 (Grant No. MOE2012-T3-1-009), National Research Foundation (NRF) Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) Grant Agreement No. 319286 Q-MAC and UK Engineering and Physical Sciences Research Council (EPSRC) funding EP/K038311/1.

####

For more information, please click here

Contacts:
Jenny Hogan


Researcher Contact:
Dimitris Angelakis
Principal Investigator, Centre for Quantum Technologies, National University of Singapore
Assistant Professor, Technical University of Crete, Greece

+65 6601 1468

Copyright © Centre for Quantum Technologies at the National University of Singapore

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: Jirawat Tangpanitanon et al, 'Topological Pumping of Photons in Nonlinear Resonator Arrays', Physical Review Letters 117, 213603 (2016) :

Related News Press

News and information

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Physics

Kavli Lectures: Innovation by evolution and harnessing the quantum mechanics of the hydrogen bond August 15th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Spontaneous synchronisation achieved at the nanoscale July 4th, 2019

New study shows nanoscale pendulum coupling July 3rd, 2019

Possible Futures

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Chip Technology

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Toppan Photomasks and GLOBALFOUNDRIES Enter into Multi-Year Supply Agreement August 15th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

Quantum Computing

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

RIT awarded NSF funding to conceptualize Quantum Photonic Institute: RIT will develop plan for open-access Quantum Foundry for quantum photonic circuits August 7th, 2019

Virginia Tech researchers lead breakthrough in quantum computing July 26th, 2019

Discoveries

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Announcements

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project