Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > An Archimedes' screw for groups of quantum particles

Abstract:
Anyone who has tried to lead a group of tourists through a busy city knows the problem. How do you keep the group together when they are constantly jostled, held up and distracted by the hubbub around them?

An Archimedes' screw for groups of quantum particles

Singapore | Posted on November 19th, 2016

It's a problem the designers of quantum computers have to tackle. In some future quantum computers, information will be encoded in the delicate quantum states of groups of particles. These face jostling by noise and disorder within the materials of the processor. Now, an international team has proposed a scheme that could help protect groups of particles and enable them to move together without any getting lost or held up.

The proposal, published 17 November in Physical Review Letters, comes from researchers at the National University of Singapore (NUS), Technical University of Crete, University of Oxford and Google. Their paper puts forward a scheme that can reliably transport quantum states of a few photons along a line of miniature quantum circuits. Simulations show that it should efficiently move a three-photon state from one circuit site to the next over dozens of sites: the particles jump together throughout and finally appear at the other end undisturbed, with no spreading out.

The scheme is based on the ideas of physicist David J. Thouless, who won half the 2016 Nobel Prize in physics for his work on topological effects in materials. Topological effects are to do with geometry, and their use in quantum computing can help protect fragile quantum states during processing.

One of Thouless' major contributions was the invention of 'topological pumping'. This works something like Archimedes' screw pump for water. The Ancient Greek's screw spins around, but the water within it travels in a straight line up a hill. "Even though the motion of the machine is cyclical, the motion of the particles is not, they move in a line," explains Jirawat Tangpanitanon, first author on the paper and a PhD student in the group of Dimitris Angelakis at the Centre for Quantum Technologies (CQT) at NUS.

In the quantum scheme, the screw thread is not a physical structure but an oscillating external field imposed on the particles by electronic control over the device that contains them.

Angelakis started his group looking into topological pumping after others in 2015 demonstrated the effect for individual, non-interacting, particles. Angelakis, Tangpanitanon and Research Fellow Victor Bastidas wanted to find out if it would be possible to move groups of particles coherently too.

The answer is yes. What's more, unlike Archimedes' pump, which can only move water one way, the quantum particles can even be sent into reverse by changing the initial conditions. "It's like a moonwalk," jokes Tangpanitanon. It looks like everything should be moving forward, but instead the particles go backwards due to quantum effects.

Co-author Pedram Roushan - part of the Google group in Santa Barbara, California building superconducting circuits for quantum computing - and the team hopes to see the idea implemented in similar hardware. "This paper is almost a blueprint. We developed the proposal to match existing devices," says Angelakis, who is a Principal Investigator at CQT and a faculty member at the Technical University of Crete.

This research is supported by Singapore Ministry of Education Academic Research Fund Tier 3 (Grant No. MOE2012-T3-1-009), National Research Foundation (NRF) Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) Grant Agreement No. 319286 Q-MAC and UK Engineering and Physical Sciences Research Council (EPSRC) funding EP/K038311/1.

####

For more information, please click here

Contacts:
Jenny Hogan


Researcher Contact:
Dimitris Angelakis
Principal Investigator, Centre for Quantum Technologies, National University of Singapore
Assistant Professor, Technical University of Crete, Greece

+65 6601 1468

Copyright © Centre for Quantum Technologies at the National University of Singapore

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: Jirawat Tangpanitanon et al, 'Topological Pumping of Photons in Nonlinear Resonator Arrays', Physical Review Letters 117, 213603 (2016) :

Related News Press

News and information

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

Physics

Let's not make big waves: A team of researchers generates ultra-short spin waves in an astoundingly simple material March 29th, 2019

Russian physicists obtained data on particles self-organization in ultracold dusty plasma March 29th, 2019

In a new quantum simulator, light behaves like a magnet March 26th, 2019

A Research Hat-Trick: Mechanical engineering professor Bolin Liao receives third early-career award since September March 26th, 2019

Possible Futures

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Chip Technology

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Improving quantum computers April 19th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Quantum Computing

Improving quantum computers April 19th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

Discoveries

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

Announcements

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project