Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Making spintronic neurons sing in unison

This is Johan Åkerman.
CREDIT
Photo: Johan Wingborg
This is Johan Åkerman. CREDIT Photo: Johan Wingborg

Abstract:
What do fireflies, Huygens's wall clocks, and even the heart of choir singers, have in common? They can all synchronize their respective individual signals into one single unison tone or rhythm.

Making spintronic neurons sing in unison

Gothenburg, Sweden | Posted on November 18th, 2016

Now researchers at University of Gothenburg have taught two different emerging classes of nano-scopic microwave signal oscillators, which can be used as future spintronic neurons, to sing in unison with their neighbours.

Earlier this year, they announced the first successful synchronization of five so-called nano-contact spin torque oscillators [1]. In that system, one of the nano-contacts played the role of the conductor, deciding which note to sing, and the other nano-contacts happily followed her lead. This synchronized state was best described as driven and directional, since every nano-contact in the chain only listened to its upstream neighbor, adjusted its own frequency in accordance, and then enforced this frequency on the next neighbor downstream. The interaction strength is the same between each neighbor and the chain can hence be made very long without any oscillator singing out of tune.

This time around the same research group has demonstrated synchronization of as many as nine nano-constriction based spin Hall nano-oscillators. In this system, there is no conductor. Instead the organization is entirely flat with each oscillator now listening to both its neighbors. As a consequence, the note is decided in a democratic manner, with the final unison state being an agreed on compromise between all the original individual frequencies. The synchronized state is hence best described as both mutual and bi-directional. This means that information can now travel in both directions and a perturbation at any location along the oscillator chain can lead to an adjustment of the tone of the entire choir.

By making use of the spin Hall effect, not only to power each oscillator but also to enhance the coupling between the nano-constrictions, the authors were also able to synchronize two oscillators separated by up to 4 micrometers.

"As the nano-constrictions are only 100 nm in size, this would correspond to a line of nine singers, each singer standing some 80 meters from its nearest neighbor, and still all singers staying in tune," says Ahmad Awad, the first author of the study. "The synchronization is hence very robust".

The researchers envision that both types of oscillators can play key parts in future oscillatory networks for wave based neuromorphic computing. For example, inputs and outputs from the network require directionality to make sure the information travels in the correct direction and that the outputs are unperturbed by any potential interference or other spurious signals. However, inside the network, one wants to make use of the parallelism and the collective response of all oscillators. This hence requires bi-directionality and mutual synchronization within the network itself.

Says Prof. Johan Åkerman, the principal investigator behind the results: "The demonstration of the key concepts of both driven and mutual synchronization in nano-scopic microwave oscillators is really only the first step. The robustness of our results now give us the design freedom to explore oscillator networks of any size using a wide range of different layouts only limited by one's imagination. Add the potential for neuromorphic computing and you can see why we are so excited!"

####

For more information, please click here

Contacts:
Johan Åkerman

46-317-869-147

Copyright © University of Gothenburg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read more: Nature Physics:

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Possible Futures

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Chip Technology

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Discoveries

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project