Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First time physicists observed and quantified tiny nanoparticle crossing lipid membrane

Lipid-covered hydrophobic gold nanoparticles cross the membrane.
CREDIT
URV
Lipid-covered hydrophobic gold nanoparticles cross the membrane. CREDIT URV

Abstract:
This discovery may raise concerns about safety of nanomaterials for public health and may suggest to revise the security norms at nanoscale bringing attention to the safety of nanomaterials in general.

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane

Tarragona, Spain | Posted on November 7th, 2016

Nanomaterials have invaded most of products used in our daily life. They are found everywhere: from cosmetics (creams, toothpastes, and shampoo), food components (sugar, or salt), clothes, buildings cement, paints, car tires, oil, electronic products (smartphones, screen), energy, pharmaceutics (drugs, medical imaging). The OECD recently reported that nanoparticles are present in more than 1300 commercial products where we ignore the potential toxicity for people, animals and environment. The absence of reliable tools to monitor nanoscale objects and tremendous number of mechanisms of possible toxicity leads to controversial regulations in nanotoxicity: for example, nanoparticles in creams are not crossing the human skin, but may enter through lungs or mucus layer. That is why the exact way how certain nanoparticle interact with human tissues and barriers, including cell membranes is still not well understood. One of the reasons is the enormous difficulty to visualize individual nanoparticles. Indeed, nano-objects are below diffraction limit and thus below the capacities of optical microscopes. As a result, special and original techniques have to be designed to see the events in submicron world. Another difficulty related to tiny particles: they move fast and the processes associated with them last fractions of seconds: the measurement should be also fast.

Based on these concerns, the team of theoretical physics at Universitat Rovira i Virgili in Tarragona, led by Dr. Vladimir Baulin, the coordinator of European Network ITN SNAL, designed a research project to investigate the interaction between nanoparticles and lipid membranes. In computer simulations, the researchers first created what they call a "perfect bilayer", in which all of the lipid tails stay in place within the membrane. Based on their calculations, the team of Dr. Baulin observed that small hydrophobic nanoparticles can insert into the lipid bilayer if their size is similar to the thickness of the membrane (around 5 nanometers).

They observed that these nanoparticles stay trapped in the cell membrane, as commonly accepted by the scientific community. But a surprise appears when they studied the case of superhydrophobic nanoparticles, as these nanoparticles could not only insert into the cell membrane but they could also escape this membrane spontaneously.

"It is generally accepted that smaller the size of the object, easier to cross the barriers. Here we see opposite scenario: NPs with size >5nm can cross the bilayer spontaneously." says Dr. Baulin.

This is where Dr. Baulin contacted Dr. Jean-Baptiste Fleury at the Saarland University (Germany) to confirm this mechanism and to study experimentally this unique translocation phenomena. Dr. Fleury and his team, designed a microfluidic experiment to form phospholipid bilayer systems, which can be considered as artificial cell membranes. With this experimental setup, they explored the interaction of individual nanoparticles with such an artificial membrane. The used gold nanoparticles had an adsorbed lipid monolayer that guarantees their stable dispersion and prevent their clustering. Using a combination of optical fluorescent microscopy and electrophysiological measurements, the team of Dr. Fleury could follow individual particles crossing a bilayer and unravel their pathway on a molecular level. And as predicted by the simulations, they observed that nanoparticles insert into the bilayer by dissolving their lipid coating into the artificial membrane. Nanoparticles with a diameter equal or larger than 6 nm, i.e. the typical extension of a bilayer, are able to escape the bilayer again with very few milliseconds, while smaller nanoparticles remain trapped in the core of the bilayer.

This discovery of fast translocation of tiny gold nanoparticles through barriers protecting cells, i.e. lipid bilayer, may raise concerns about safety of nanomaterials for public health and may suggest to revise the security norms at nanoscale bringing attention to the safety of nanomaterials in general.

####

For more information, please click here

Contacts:
Vladimir Baulin

34-977-558-577

Copyright © Universitat Rovira i Virgili

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE - Yachong Guo, Emmanuel Terazzi, Ralf Seemann, Jean Baptiste Fleury, Vladimir A. Baulin "Direct Proof of Spontaneous Translocation of ipid-Covered Hydrophobic Nanoparticles Through a Phospholipid Bilayer". Science Advances, November 2016:

Related News Press

News and information

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Possible Futures

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Discoveries

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Announcements

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Environment

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

Nanostructures taste the rainbow: Combining nanophotonics and thermoelectrics, engineers at Caltech generate materials capable of distinguishing between tiny differences in wavelengths of light June 30th, 2017

New photoacoustic technique detects gases at parts-per-quadrillion level June 30th, 2017

Safety-Nanoparticles/Risk management

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project