Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Metamaterial device allows chameleon-like behavior in the infrared

This is an infrared image of metadevice composed of vanadium dioxide with gold patterned mesh. (Top) Device without any electric current showing the PSU cut from the pattern and reflective. (Middle) Device with 2.03 amps of current. The PSU and background now appear the same, the PSU has faded into the background. (Bottom) Device with 2.20 amps of current. The background is now reflective while the PSU is not.
CREDIT
Douglas Werner, Penn State
This is an infrared image of metadevice composed of vanadium dioxide with gold patterned mesh. (Top) Device without any electric current showing the PSU cut from the pattern and reflective. (Middle) Device with 2.03 amps of current. The PSU and background now appear the same, the PSU has faded into the background. (Bottom) Device with 2.20 amps of current. The background is now reflective while the PSU is not. CREDIT Douglas Werner, Penn State

Abstract:
An electric current will not only heat a hybrid metamaterial, but will also trigger it to change state and fade into the background like a chameleon in what may be the proof-of-concept of the first controllable metamaterial device, or metadevice, according to a team of engineers.

Metamaterial device allows chameleon-like behavior in the infrared

University Park, PA | Posted on October 28th, 2016

"Previous metamaterials work focused mainly on cloaking objects so they were invisible in the radio frequency or other specific frequencies," said Douglas H. Werner, John L. and Genevieve H. McCain Chair Professor of electrical engineering, Penn State. "Here we are not trying to make something disappear, but to make it blend in with the background like a chameleon and we are working in optical wavelengths, specifically in the infrared."

Metamaterials are synthetic, composite materials that possess qualities not seen in natural materials. These composites derive their functionality by their internal structure rather than by their chemical composition. Existing metamaterials have unusual electromagnetic or acoustic properties. Metadevices take metamaterials and do something of interest or value as any device does.

"The key to this metamaterial and metadevice is vanadium dioxide, a phase change crystal with a phase transition that is triggered by temperatures created by an electric current," said Lei Kang, research associate in electrical engineering, Penn State.

The metamaterial is composed of a base layer of gold thick enough so that light cannot pass through it. A thin layer of aluminum dioxide separates the gold from the active vanadium dioxide layer. Another layer of aluminum dioxide separates the vanadium from a gold-patterned layer that is attached to an external electric source. The geometry of the patterned mesh screen controls the functional wavelength range. The amount of current flowing through the device controls the Joule heating effect, the heating due to resistance.

"The proposed metadevice integrated with novel transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems," the researchers said in today's (Oct. 27) issue of Nature Communications.

As a proof of concept, the researchers created a .035 inch by .02 inch device and cut the letters PSU into the gold mesh layer so the vanadium dioxide showed through. The researchers photographed the device using an infrared camera at 2.67 microns. Without any current flowing through the device, the PSU stands out as highly reflective. With a current of 2.03 amps, the PSU fades into the background and becomes invisible, while at 2.20 amps, the PSU is clearly visible but the background has become highly reflective.

The response of the vanadium dioxide is tunable by altering the current flowing through the device. According to the researchers, vanadium dioxide can change state very rapidly and it is the device configuration that limits the tuning.

###

Also working on this project were Liu Liu, recent Ph.D. graduate now at Intel and Theresa S. Mayer, vice president for research and innovation, Virginia Tech.

The National Science Foundation partially funded this work.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Photonics/Optics/Lasers

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project