Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures

Microscopic silver cubes were the bullets in Rice University experiments to show how deformation upon impact can make materials stronger and tougher.
Credit: Thomas Group/Rice University
Microscopic silver cubes were the bullets in Rice University experiments to show how deformation upon impact can make materials stronger and tougher. Credit: Thomas Group/Rice University

Abstract:
Scientists at Rice University are smashing metallic micro-cubes to make them ultrastrong and tough by rearranging their nanostructures upon impact.

Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures

Houston, TX | Posted on October 20th, 2016

The Rice team reported in Science this week that firing a tiny, nearly perfect cube of silver onto a hard target turns its single-crystal microstructure into a gradient-nano-grained (GNG) structure.

The purpose of the experiment was to learn how materials deform under overwhelming stress, as might be experienced by a bulletproof vest or a spacecraft that encounters micrometeorites. The researchers believe creating a gradient nanostructure in materials by way of deformation will make them more ductile and therefore less likely to fail catastrophically when subsequently stressed.

Ultimately, they want to develop nano-grained metals that are tougher and stronger than anything available today.

Led by materials scientist Edwin Thomas, the William and Stephanie Sick Dean of Rice's George R. Brown School of Engineering, the team used its advanced laser-induced projectile impact test (LIPIT) rig to shoot microcubes onto a silicon target. The mechanism allowed them to be sure the cube hit the target squarely.

The Thomas lab developed the LIPIT technique several years ago to fire microbullets to test the strength of polymer and graphene film materials. This time the researchers were essentially testing the bullet itself.

"The high-velocity impact generates very high pressure that far exceeds the material’s strength," Thomas said. "This leads to high plasticity at the impact side of the cube while the top region retains its initial structure, ultimately creating a grain-size gradient along its height."

The original projectiles needed to be as perfect as possible. That required a custom fabrication method, Thomas said. The cubes for the study were synthesized as single crystals via bottom-up seed growth to about 1.4 microns per side, about 50 times smaller than the width of a human hair.

LIPIT transformed laser power into the mechanical energy that propelled the cubes toward a target at supersonic velocity. The cubes were placed on top of a thin polymer film that thermally isolated them and prevented the laser itself from deforming them. When a laser pulse hit an absorbing thin-film gold layer underneath the polymer, the laser energy caused it to vaporize. That expanded the polymer film, which launched the microcubes.

The distance covered was small -- about 500 micrometers -- but the effect was large. While the experiments were carried out at room temperature, the cube's temperature rose by about 350 degrees Fahrenheit upon impact at 400 meters per second and allowed dynamic recrystallization.

The team fired silver cubes at the target at various orientations and measured the results of the impact from every angle, inside and out and from the nanoscale on up. Controlling the orientation of the crystal's impact gave them enormous ability to control the resulting structure and potentially its mechanical properties, Thomas said.

Other industrial processes produce materials with grains that can range from the nanocrystalline up to the coarse-grained, and, Thomas said, neither structure is ideal. While nanocrystalline structures make metals stronger, they also increase their susceptibility to catastrophic brittle failure due to the way those grains localize strain. Studies have demonstrated that creating a gradient-nano-grained structure from the nanometer to the micron scale may provide high strength yet alleviate such brittle failures by better distribution of stress.

The one-step Rice process makes such structures with a range of grains from about 10 to 500 nanometers over a distance of 500 nanometers. That produces a gradient at least 10 times higher than the other techniques, the researchers reported.

They also discovered the impact stores considerable elastic energy in the material, which leads to slow but continuous recrystallization of the metal at room temperature, even though silver’s melting point is more than 1,700 degrees Fahrenheit. Electron microscope analysis of samples eight days after impact showed the crystals were still seeking equilibrium, Thomas said.

In addition to promising pathways for creating ultrastrong and tough metals, the researchers believe their work may influence such other modern material processing techniques as cold spray and shot peening.

Rice postdoctoral researcher Ramathasan Thevamaran is lead author of the paper. Co-authors are Rice graduate student Olawale Lawal and research scientist Sadegh Yazdi and Rice alumni Seog-Jin Jeon, a postdoctoral researcher, and Jae-Hwang Lee, an assistant professor of mechanical and industrial engineering, both at the University of Massachusetts, Amherst.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to tinyurl.com/RiceUniversityoverview.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Graphene/ Graphite

Graphene nanotubes provide a shortcut to add conductivity to powder coatings October 1st, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

From anti-icing coatings to protection of containers with flammable liquids: heating films with graphene nanotubes enter the market August 20th, 2021

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

Plasmonics

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Discoveries

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Materials/Metamaterials

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Tools

Inspired by photosynthesis, scientists double reaction quantum efficiency October 1st, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Tweezer grant pleases Rice researchers: University wins NSF grant to acquire ‘optical tweezer’ to manipulate micron-scale matter September 10th, 2021

Imaging single spine structural plasticity at the nanoscale level: Researchers at the Max Planck Florida Institute for Neuroscience (MPFI) have developed a new imaging technique capable of visualizing the dynamically changing structure of dendritic spines with unprecedented resol September 3rd, 2021

Aerospace/Space

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

The National Space Society Joins the Progressive Policy Institute in Supporting Rapid Development of Space Solar Power: Orbiting Solar Power Stations Would Help to Save the Environment August 20th, 2021

From anti-icing coatings to protection of containers with flammable liquids: heating films with graphene nanotubes enter the market August 20th, 2021

Research partnerships

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

New molecular device has unprecedented reconfigurability reminiscent of brain plasticity: Device can be reconfigured multiple times simply by changing applied voltage September 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project