Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps

In a single-photon detector, individual photons from a light source produce detectable electronic signals (large multicolored pulse at left), as well as pulses of electronic noise (subsequent, smaller signals) that are correlated with the original signal. NIST’s newly patented detection system reduces this noise and increases the detector’s efficiency, improving the ability to detect single photons. The image above shows 4000 output signals from the detection system, some of which show the signal produced by single-photon detection.
Credit: Bienfang/NIST
In a single-photon detector, individual photons from a light source produce detectable electronic signals (large multicolored pulse at left), as well as pulses of electronic noise (subsequent, smaller signals) that are correlated with the original signal. NIST’s newly patented detection system reduces this noise and increases the detector’s efficiency, improving the ability to detect single photons. The image above shows 4000 output signals from the detection system, some of which show the signal produced by single-photon detection.

Credit: Bienfang/NIST

Abstract:
Individual photons of light now can be detected far more efficiently using a device patented (link is external) by a team including the National Institute of Standards and Technology (NIST), whose scientists have overcome longstanding limitations with one of the most commonly used type of single-photon detectors. Their invention could allow higher rates of transmission of encrypted electronic information and improved detection of greenhouse gases in the atmosphere.

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps

Gaithersburg, MD | Posted on September 16th, 2016

Light is widely used for communications, carrying phone conversations and video signals through fiber-optic cables around the world in pulses composed of many photons. Single photons are the weakest signal that can be transmitted, and they too have a wide range of applications, including observing how single molecules or atoms behave (link is external), implementing an encryption technique called quantum key distribution, and creating high-resolution maps (link is external). However, single photons of light typically have very little energy, making them difficult to detect.
A common type of detector—based on indium-gallium-arsenide semiconductors—has been catching individual photons for years, and it is widely used in quantum cryptography research because it can detect photons at the particular wavelengths (colors of light) that travel through fiber. Unfortunately, when the detector receives a photon and outputs a signal, sometimes an echo of electronic noise is induced within the detector. Traditionally, to reduce the chances of this happening, the detector must be disabled for some time after each detection, limiting how often it can detect photons.

Recent research has shown that the noisy echo can also be suppressed by activating the detector only for very short times, effectively creating a “gate” in the detector that only opens briefly to accept signals. Unfortunately, this also means that the photons have to arrive only during those short intervals.

The team, which also includes scientists working at the California Institute of Technology and the University of Maryland, has patented a method to detect the photons that arrive when the gates are either open or closed. The NIST team had developed a highly sensitive way to read tiny signals from the detector, a method that is based on electronic interferometry, or the combining of waves such that they cancel each other out.
The approach allows readout of tiny signals even when the voltage pulses that open the gate are large, and the team found that these large pulses allow the detector to be operated in a new way. The pulses turn on the detector during the gate as usual. But in between gate openings the pulses turn the detector off so well that signals produced by absorbing a photon can linger for a while in the device. Then the next time the gate opens, these lingering signals can be amplified and read out.
The new detector can count individual photons at a very high maximum rate—several hundred million per second—and at higher than normal efficiency, while maintaining low noise. Its efficiency is at least 50 percent for photons in the near infrared, the standard wavelength range used in telecommunications. Commercial detectors operate with only 20 to 30 percent efficiency.
The added ability to detect photons that arrive when the gate is closed increases the detector’s efficiency, an improvement that would be particularly beneficial in applications in which photons could arrive at any moment, such as atmospheric scanning and topographic mapping.
“Single-photon detectors are useful for sensing the presence of some greenhouse gases in the atmosphere by sending a laser pulse into the air and seeing when photons come back,” said NIST physicist Josh Bienfang. “Fast-gated detectors are great for this because they can count efficiently and at high rates, but they are only sensitive during the gates because, of course, the returned photons can arrive at any time. Our new method can address this shortcoming.”
The U.S. Patent and Trademark Office issued a patent for “Photon detector and process for detecting a single photon” on July 26, 2016, as U.S. Patent No. 9,401,448 (link is external), based upon Patent Application No. 14/547,189.

####

For more information, please click here

Contacts:
Chad T. Boutin
(link sends e-mail)
(301) 975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Optical computing/Photonic computing

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project