Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design

Abstract:
AIM Photonics today announced the integrated silicon photonics Process Design Kit (PDK) is now available to all those organizations that have executed membership agreements. The achievement of this important milestone resulted from a project led by SUNY Polytechnic Institute, encompassing a significant effort by Analog Photonics, to create a library of photonic components designed to work within the SUNY Poly silicon photonics process. The PDK will enable AIM Photonics members to access leading edge silicon photonics technology to generate their own piece of real estate on the up-coming Multi Project Wafer (MPW) run.

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design

Rochester, NY | Posted on August 25th, 2016

AIM CEO and SUNY Poly Executive Vice President of Innovation and Technology Dr. Michael Liehr said, “We are excited to offer these benefits to AIM members after just one year of operation and look forward to providing many other ground breaking photonics capabilities to the broader photonics community in the coming months and years, thereby fulfilling our charter as a member of the National Network for Manufacturing Innovation.”

The PDK and the MPW capability are tangible examples of the benefits afforded to Members of AIM Photonics. Our Members are provided access to cutting edge research and state-of-the-art fabrication, packaging, design, and testing capabilities and enjoy the significant cost savings associated with consortium activities.

In addition to the typical custom layout information needed to create custom photonic devices, the PDK also includes a significant amount of intellectual property in the high performance library of fundamental silicon photonic passive and active devices developed by Analog Photonics, LLC.

“These library components can be quickly instantiated at a schematic level to create sophisticated system level designs in a short amount of time. We believe the capabilities of this library will enable next generation photonic circuits to be developed quickly and reliably,” said Analog Photonics’ CEO Mike Watts.

“This kind of system-level design methodology is beginning to be supported by leading electronic-photonic design automation (EPDA) companies and is critical for enabling large-scale integrated photonic designs with lower cost and schedule,” said Brett Attaway, AIM Photonics’ Director of EPDA. “We could not have completed this initial release of the PDK without the strong support of our world-leading AIM member EPDA companies. It’s extremely important that we enable the next generation of integrated photonic design methodologies, and our EPDA member companies are enabling us to do that and help grow the industry with this PDK release.”

Future releases of the PDK are planned over the next several years with improved validation data, models and new components added to the library.

AIM Photonics is planning to have several MPW fab runs in 2017, depending on demand, which may include up to three MPWs for the full silicon photonics process, and two MPWs with a reduced process for passive-only devices and three MPWs for interposers as demand requires. The first full silicon and interposer MPW runs in 2017 will start towards the end of the first quarter. In order to ensure space for all interested parties, AIM Photonics is currently accepting reservations for these MPW runs. Those interested in participating in any of the 2017 MPW silicon photonics runs should contact Chandra Cotter at by October 31, 2016, in order to guarantee a spot on these exciting new silicon photonics offerings. Interested parties can also sign up for the 2017 runs by visiting our website at the following link: www.aimphotonics.com/multiproject-wafer-mpw/

PDK and MPW fab access occurs solely through a MPW aggregator. The MOSIS Service has been chosen as the AIM Photonics MPW aggregator. Please contact MOSIS for access to the most current PDK version release at the following link: www.mosis.com/vendors/view/AIM

####

Contacts:
Jerry Gretzinger
Vice President
Strategic Communications and Public Relations
(518) 956-7359

Copyright © SUNY Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Academic/Education

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

LPU signs MoU with Bruker India for Research Cooperation in Nanotechnology and Material Science September 3rd, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society March 14th, 2019

Chip Technology

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Optical computing/Photonic computing

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

Save time using maths: Analytical tool designs corkscrew-shaped nano-antennae August 23rd, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Announcements

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Photonics/Optics/Lasers

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Scientists create a nanomaterial that is both twisted and untwisted at the same time: The material developed at University of Bath allows for incredibly sensitive detection of the direction molecules twist September 13th, 2019

Optical vacuum cleaner can manipulate nanoparticles: The TPU and international researchers developed a concept for constructing an optical vacuum cleaner; due to its optical properties, it can trap nanoparticles from the environment; currently, there are no sufficiently effective September 13th, 2019

Laser-based ultrasound approach provides new direction for nondestructive testing: Patches coated with nanoparticles from candle soot found to generate ultrasonic waves that can be used to monitor the structural integrity of buildings September 4th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project