Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters

Optimally adapted probes for atomic force microscopes can now be produced by 3-D nanoprinting at KIT.

Photos: KIT
Optimally adapted probes for atomic force microscopes can now be produced by 3-D nanoprinting at KIT.

Photos: KIT

Abstract:
Atomic force microscopes make the nanostructure of surfaces visible. Their probes scan the investigation material with finest measurement needles. KIT has now succeeded in adapting these needles to the application. For any measurement task, e.g. for various biological samples, a suitable measurement needle can be produced. For production, 3D laser lithography, i.e. a 3D printer of structures in the nanometer size, is applied. This success has made it to the title page of the Applied Physics Letters journal. DOI: 10.1063/1.4960386

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters

Karlsruhe, Germany | Posted on August 11th, 2016

Atomic force microscopes are used to analyze surfaces down to the atomic level. The standard probes that have been applied for this purpose so far, however, are not suited for every use. Some examination objects require a special shape or a very long probe to scan deep depressions of the material. KIT researchers have now succeeded in producing probes that are optimally adapted to special requirements.

"Biological surfaces, such as the petals of tulips or roses, frequently have very deep structures with high hills," says Hendrik Hölscher, Head of the Scanning Probe Technologies Group of KIT's Institute of Microstructure Technology. Commercially available probes typically are 15 micrometers, i.e. 15 thousandths of a millimeter, high, pyramid-shaped, and relatively wide, the physicist points out. Probes with other shapes are offered, but have to be produced manually, which makes them very expensive.

The KIT researchers have now succeeded in producing by means of 3D laser lithography tailored probes of any shape with a radius of 25 nanometers only, corresponding to 25 millionths of a millimeter. This process can be used to design and print in three dimensions any shape desired and has been known in the macroscopic area for some time already. On the nanoscale, this approach is highly complex. To obtain the three-dimensional structures desired, the researchers use the 3D lithography process developed by KIT and commercialized by Nanoscribe, a spinoff of KIT. This method is based on two-photon polymerization: Strongly focused laser pulses are applied to harden light-sensitive materials after the desired structures have been produced. The hardened structures are then separated from the surrounding, non-exposed material. "In this way, the perfect probe can be produced for any sample to be studied," Hölscher explains.

Use of this process for enhancing atomic force microscopy is reported by the researchers in the Applied Physics Letters journal under the heading "Tailored probes for atomic force microscopy fabricated by two-photon polymerization". The probes that can be produced in any shape can be placed on conventional, commercially available measurement needles and are hardly subject to wear. They are perfectly suited for studying biological samples, but also technical and optical components in the range od nanometers.

###

Research was financed by the German Research Foundation, a Starting Grant and a Senior Grant of the European Research Council (ERC), funds of the Alfried Krupp von Bohlen and Halbach Foundation, and the Federal Ministry of Education and Research under the PHOIBOS project. In addition, work was supported by the "Karlsruhe Nano-Micro Facility" (KNMF) of KIT.

####

About Karlsruhe Institute of Technology (KIT)
Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

KIT - The Research University in the Helmholtz Association

Since 2010, the KIT has been certified as a family-friendly university.

For more information, please click here

Contacts:
Monika Landgraf

49-721-608-47414

For further information, please contact:
Kosta Schinarakis
PKM - Science Scout
Phone: +49 721 608 41956
Fax: +49 721 608 43658

Copyright © Karlsruhe Institute of Technology (KIT)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE - Gerald Göring, Philipp-Immanuel Dietrich, Matthias Blaicher, Swati Sharma, Jan G. Korvink, Thomas Schimmel, Christian Koos, and Hendrik Hölscher: Tailored probes for atomic force microscopy fabricated by two-photon polymerization. Applied Physics Letters. DOI 10.1063/1.4960386.

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Quantum powers researchers to see the unseen September 8th, 2023

3D & 4D printing/Additive-manufacturing

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project