Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Atomic bits despite zero-point energy? Jülich scientists explore novel ways of developing stable nanomagnets

This is an artistic depiction of the magnetic fluctuations (blue arrows) of a single atom (red ball) lying on a surface (gray balls).

Copyright: Reprinted with permission from Nano Lett., DOI: 10.1021/acs.nanolett.6b01344. Copyright 2016. American Chemical Society.
This is an artistic depiction of the magnetic fluctuations (blue arrows) of a single atom (red ball) lying on a surface (gray balls).

Copyright: Reprinted with permission from Nano Lett., DOI: 10.1021/acs.nanolett.6b01344. Copyright 2016. American Chemical Society.

Abstract:
So-called "zero-point energy" is a term familiar to some cinema lovers or series fans; in the fictional world of animated films such as "The Incredibles" or the TV series "Stargate Atlantis", it denotes a powerful and virtually inexhaustible energy source. Whether it could ever be used as such is arguable. Scientists at Jülich have now found out that it plays an important role in the stability of nanomagnets. These are of great technical interest for the magnetic storage of data, but so far have never been sufficiently stable. Researchers are now pointing the way to making it possible to produce nanomagnets with low zero-point energy and thus a higher degree of stability (Nano Letters, DOI: 10.1021/acs.nanolett.6b01344).

Atomic bits despite zero-point energy? Jülich scientists explore novel ways of developing stable nanomagnets

Juelich, Germany | Posted on July 11th, 2016

Since the 1970s, the number of components in computer chips has doubled every one to two years, their size diminishing. This development has made the production of small, powerful computers such as smart phones possible for the first time. In the meantime, many components are only about as big as a virus and the miniaturization process has slowed down. This is because below approximately a nanometre, a billionth of a meter in size, quantum effects come into play. They make it harder, for example, to stabilise magnetic moments. Researchers worldwide are looking for suitable materials for magnetically stable nanomagnets so that data can be stored safely in the smallest of spaces.

In this context, stable means that the magnetic moments point consistently in one of two preassigned directions. The direction then codes the bit. However, the magnetic moments of atoms are always in motion. The trigger here is the so-called zero-point energy, the energy that a quantum mechanical system possesses in its ground state at absolute zero temperature. "It makes the magnetic moments of atoms fluctuate even at the lowest of temperatures and thus works against the stability of the magnetic moments", explains Dr. Julen Ibañez-Azpiroz, from the Helmholtz Young Investigators Group "Functional Nanoscale Structure Probe and Simulation Laboratory" at the Peter Grünberg Institute and at the Institute for Advanced Simulation. When too much energy exists within the system, the magnetic moments turn over and the saved information is lost.

"Our calculations show that the zero-point magnetic fluctuations can even reach the same order of magnitude as the magnetic moment itself", reports Ibañez-Azpiroz. "This explains why the search for stable nanomagnets is so difficult". There is, however, also a counterpart to this, in the form of an energy barrier, which the moment must overcome as it rotates. The height of the barrier depends on the material it is made from.

The Jülich researchers investigated how quantum effects influence magnetic stability in detail using particularly promising materials from the class of transition metals. From their results they have established guidelines for the development of stable nanomagnets with low levels of quantum fluctuations. Their chart showing the suitability of different elements should serve as a construction kit for combining complex nanomagnets made from several different atoms.

"We found the smallest fluctuations in materials with a strong magnetic moment which at the same time interacts weakly with that of the carrier material. Furthermore, the material should be chosen so that the energy barrier that prevents the rotation of the magnetic moment is as large as possible", summed up Prof. Samir Lounis, the physicist heading up the Young Investigator Group. "This knowledge has practical application: For example, grouping atoms together enlarges the total magnetic moment and an insulating carrier material should be selected instead of a metallic one".

The scientists systematically investigated the connection between characteristic properties of the atoms and the strength of the magnetic fluctuations caused by zero-point energy. For this, they used so-called "ab initio" calculations, which are based only on generally accepted physical laws, without adaptations to experimental data. Ibañez-Azpiroz now plans further calculations to look at how the number of atoms influence the fluctuations.

####

For more information, please click here

Contacts:
Angela Wenzik

49-246-161-6048

Prof. Dr. Samir Lounis
Forschungszentrum Jülich
Quantum Theory of Materials
el. +49 2461 61-4068


Dr. Julen Ibañez-Azpiroz
Forschungszentrum Jülich
Quantum Theory of Materials
Tel. +49 2461 61-5195

Copyright © Forschungszentrum Juelich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication:

Forschungszentrum Jülich:

Forschung am Institut Quanten-Theorie der Materialien (PGI-1/IAS-1):

Forschung am PGI-1/IAS-1, Young Investigators Group „Funsilab":

Related News Press

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project