Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Key compound for high-temperature superconductivity was found: Leading to the solution of environmental and energy problems with superconductivity

a. Crystal structure of the H5S2 compound predicted by genetic algorithm technique. The structure forms a mixed structure of H2S and H3S molecules. b. Comparison of superconducting critical temperature (Tc) among experimental and calculated results. The Tc value calculated for H5S2 shows a good agreement with the experimental data of the superconducting phase II (SC-II).
CREDIT: Osaka University
a. Crystal structure of the H5S2 compound predicted by genetic algorithm technique. The structure forms a mixed structure of H2S and H3S molecules. b. Comparison of superconducting critical temperature (Tc) among experimental and calculated results. The Tc value calculated for H5S2 shows a good agreement with the experimental data of the superconducting phase II (SC-II).

CREDIT: Osaka University

Abstract:
A research group in Japan found a new compound H5S2 that shows a new superconductivity phase on computer simulation. Further theoretical and experimental research based on H5S2 predicted by this group will lead to the clarification of the mechanism behind high-temperature superconductivity, which takes place in hydrogen sulfide .

Key compound for high-temperature superconductivity was found: Leading to the solution of environmental and energy problems with superconductivity

Osaka, Japan | Posted on June 17th, 2016

Superconductivity is the total disappearance of electrical resistance when an object is cooled below a definite temperature. If superconductor is used for electric wire, it becomes possible to carry electricity without loss. That's why superconductivity has been drawing attention as an important physical phenomenon for solving environmental and energy problems.

However, the superconducting critical temperature, the temperature at which superconductivity takes place, is so low that its practical realization is difficult. Last year, a striking news came out that H2S broke the record for superconducting critical temperature under high-pressure. However, the chemical composition ratio of sulfur and hydrogen and the crystal structure during the process in which superconductivity takes place have not been well understood.

A research group led by Takahiro Ishikawa, Specially Appointed Assistant Professor, and Katsuya Shimizu, Professor, at Center for Science and Technology under Extreme Conditions, Graduate School of Engineering Science, Osaka University, Tatsuki Oda, Professor at School of Mathematics and Physics, Kanazawa University, and Naoshi Suzuki, Professor at Faculty of Engineering Science, Kansai University predicted a new superconductivity phase of hydrogen sulfide (H5S2), which was presented at a pressure of 1.1 million bar on computer simulation. The superconducting critical temperature obtained from H5S2, whose calculated value was the same as the experimental value. This result may lead to the clarification of the mechanism behind high-temperature superconductivity, which takes place in hydrogen sulfide by further theoretical and experimental research based on H5S2.

Furthermore, by applying methods used and knowledge obtained by this group to other light element hydrides, it will become possible to establish guidelines for enhancing superconducting critical temperature to near room temperature.

This research was featured in the electronic version of Scientific Reports on Thursday, March 17, 2016

####

For more information, please click here

Contacts:
Saori Obayashi

81-661-055-886

Copyright © Osaka University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Superconductivity

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project