Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor

Abstract:
Fuel cells, which generate electricity from chemical reactions without harmful emissions, have the potential to power everything from cars to portable electronics, and could be cleaner and more efficient than combustion engines.

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor

Cambridge, MA | Posted on May 18th, 2016

Solid oxide fuel cells, which rely on low- cost ceramic materials, are among the most efficient and promising type of fuel cell. Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences have found a way to harness the quantum behavior of these fuel cells to make them even more efficient and robust. In doing so, they've observed a new type of phase transition in an oxide material.

The research is described in the journal Nature.

Fuel cells work like batteries -- generating an electric current by forcing electrons to flow between two electrodes, the anode and the cathode separated by an electrolyte. Unlike batteries, fuel cells don't need to be recharged. All they require is fuel, mostly in the form of hydrogen.

When the hydrogen is fed into the anode, it splits into a proton and an electron. The electrolyte acts like a bouncer at an exclusive club -- blocking electrons form entering and allowing protons through. The electrons are forced to go the long way around, through an external circuit, which creates a flow of electricity.

On the other side of the cell, air is fed into the cathode. When the protons get through the electrolyte and the electrons pass through the circuit, they unite with the oxygen to produce water and heat, the only emissions generated by fuel cells.

But today's solid oxide fuel cells have a major problem. Over time, the fuel reacts with the electrolyte to degrade its efficiency. Soon, this chemical bouncer is letting both protons and electrons through, causing the electrical current going through the outside circuit to become weaker and weaker.

A solution to this problem may have been found by Shriram Ramanathan, Visiting Scholar in Materials Science and Mechanical Engineering at SEAS, and his graduate student You Zhou. The pair discovered that by designing the electrolyte on the quantum level, they could create a material that becomes more robust when exposed to fuel.

"We have combined the fields of quantum matter and electron chemistry in a way that led to discovery of a new, high-performance material that can phase transition from a metal to ion conductor," said Ramanathan, who is currently professor of engineering at Purdue University.

Ramanathan and his team used a perovskite-structured nickelate as their electrolyte. On its own, the nickelate conducts both electrons and ions, like protons, making it a pretty lousy electrolyte. But the team coated the surface of the nickelate with a catalyst and then injected or "doped" it with electrons. These electrons joined the electron shell of the nickel ion and transitioned the material from an electron conductor to an ion conductor.

"Now, ions can move very quickly in this material while at the same time electron flow is suppressed," said Zhou. "This is a new phenomena and it has the potential to dramatically enhance the performance of fuel cells."

"The elegance of this process is that it happens naturally when exposed to the electrons in fuel," said Ramananthan. "This technique can be applied to other electrochemical devices to make it more robust. It's like chess -- before we could only play with pawns and bishops, tools that could move in limited directions. Now, we're playing with the queen."

####

For more information, please click here

Contacts:
Leah Burrows

617-496-1351

Copyright © Harvard John A. Paulson School of Engineering and Applied Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Chemistry

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Gem-like nanoparticles of precious metals shine as catalysts: Heated particles shift shape and become highly active catalytically September 12th, 2019

Videos/Movies

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

One-atom switch supercharges fluorescent dyes: Rice University lab discovers simple technique to make biocompatible 'turn-on' dyes September 13th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Possible Futures

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Discoveries

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Materials/Metamaterials

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Scientists create a nanomaterial that is both twisted and untwisted at the same time: The material developed at University of Bath allows for incredibly sensitive detection of the direction molecules twist September 13th, 2019

MIT engineers develop 'blackest black' material to date: Made from carbon nanotubes, the new coating is 10 times darker than other very black materials September 13th, 2019

Announcements

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Energy

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Inspired by natural signals in living cells, researchers design artificial gas detector: Tiny box puts itself together and glows September 13th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Rice reactor turns greenhouse gas into pure liquid fuel: Lab's 'green' invention reduces carbon dioxide into valuable fuels September 3rd, 2019

Automotive/Transportation

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Activity of fuel cell catalysts doubled: Modelling leads to the optimum size for platinum fuel cell catalysts July 5th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Fuel Cells

Activity of fuel cell catalysts doubled: Modelling leads to the optimum size for platinum fuel cell catalysts July 5th, 2019

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Current generation via quantum proton transfer February 1st, 2019

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

Quantum nanoscience

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

Scientists couple magnetization to superconductivity for quantum discoveries September 6th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project