Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles present sustainable way to grow food crops

Researchers at Washington University in St. Louis hope that nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans.
CREDIT: WUSTL
Researchers at Washington University in St. Louis hope that nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans.

CREDIT: WUSTL

Abstract:
Scientists are working diligently to prepare for the expected increase in global population -- and therefore an increased need for food production-- in the coming decades. A team of engineers at Washington University in St. Louis has found a sustainable way to boost the growth of a protein-rich bean by improving the way it absorbs much-needed nutrients.

Nanoparticles present sustainable way to grow food crops

St. Louis, MO | Posted on May 1st, 2016

Ramesh Raliya, a research scientist, and Pratim Biswas, the Lucy & Stanley Lopata Professor and chair of the Department of Energy, Environmental & Chemical Engineering, both in the School of Engineering & Applied Science, discovered a way to reduce the use of fertilizer made from rock phosphorus and still see improvements in the growth of food crops by using zinc oxide nanoparticles.

The research was published April 7, 2016 in the Journal of Agricultural and Food Chemistry. Raliya said this is the first study to show how to mobilize native phosphorus in the soil using zinc oxide nanoparticles over the life cycle of the plant, from seed to harvest.

Food crops need phosphorus to grow, and farmers are using more and more phosphorus-based fertilizer as they increase crops to feed a growing world population. However, the plants can only use about 42 percent of the phosphorus applied to the soil, so the rest runs off into the water streams, where it grows algae that pollutes our water sources. In addition, nearly 82 percent of the world's phosphorus is used as fertilizer, but it is a limited supply, Raliya says.

"If farmers use the same amount of phosphorus as they're using now, the world's supply will be depleted in about 80 years," Raliya said. "Now is the time for the world to learn how to use phosphorus in a more sustainable manner."

Raliya and his collaborators, including Jagadish Chandra Tarafdar at the Central Arid Zone Research Institute in Jodhpur, India, created zinc oxide nanoparticles from a fungus around the plant's root that helps the plant mobilize and take up the nutrients in the soil. Zinc also is an essential nutrient for plants because it interacts with three enzymes that mobilize the complex form of phosphorus in the soil into a form that plants can absorb.

"Due to climate change, the daily temperature and rainfall amounts have changed," Raliya said. "When they changed, the microflora in the soil are also changed, and once those are depleted, the soil phosphorus can't mobilize the phosphorus, so the farmer applies more. Our goal is to increase the activity of the enzymes by several-fold, so we can mobilize the native phosphorus several-fold."

When Raliya and the team applied the zinc nanoparticles to the leaves of the mung bean plant, it increased the uptake of the phosphorus by nearly 11 percent and the activity of the three enzymes by 84 percent to 108 percent. That leads to a lesser need to add phosphorus on the soil, Raliya said.

"When the enzyme activity increases, you don't need to apply the external phosphorus, because it's already in the soil, but not in an available form for the plant to uptake," he said. "When we apply these nanoparticles, it mobilizes the complex form of phosphorus to an available form."

The mung bean is a legume grown mainly in China, southeast Asia and India, where 60 percent of the population is vegetarian and relies on plant-based protein sources. The bean is adaptable to a variety of climate conditions and is very affordable for people to grow.

Raliya said 45 percent of the worldwide phosphorus use for agriculture takes place in India and China. Much of the phosphorus supply in developing countries is imported from the United States and Morocco-based rock phosphate mines.

"We hope that this method of using zinc oxide nanoparticles can be deployed in developing countries where farmers are using a lot of phosphorus," Raliya said. "These countries are dependent on the U.S. to export phosphorus to them, but in the future, the U.S. may have to help supply food, as well. If this crop can grow in a more sustainable manner, it will be helpful for everyone."

"This is a broader effort under way at the nexus of food, energy and water," Biswas said. "Nanoparticle technology enabled by aerosol science helps develop innovative solutions to address this global challenge problem that we face today."

####

For more information, please click here

Contacts:
Erika Ebsworth-Goold

314-935-2914

Copyright © Washington University in St. Louis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project