Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Personal cooling units on the horizon

The tiny wires of the nanowire array form on a template so they are uniform.
CREDIT: Qing Wang, Penn State
The tiny wires of the nanowire array form on a template so they are uniform.

CREDIT: Qing Wang, Penn State

Abstract:
Firefighters entering burning buildings, athletes competing in the broiling sun and workers in foundries may eventually be able to carry their own, lightweight cooling units with them, thanks to a nanowire array that cools, according to Penn State materials researchers.

Personal cooling units on the horizon

University Park, PA | Posted on April 29th, 2016

"Most electrocaloric ceramic materials contain lead," said Qing Wang, professor of materials science and engineering. "We try not to use lead. Conventional cooling systems use coolants that can be environmentally problematic as well. Our nanowire array can cool without these problems."

Electrocaloric materials are nanostructured materials that show a reversible temperature change under an applied electric field. Previously available electrocaloric materials were single crystals, bulk ceramics or ceramic thin films that could cool, but are limited because they are rigid, fragile and have poor processability. Ferroelectric polymers also can cool, but the electric field needed to induce cooling is above the safety limit for humans.

Wang and his team looked at creating a nanowire material that was flexible, easily manufactured and environmentally friendly and could cool with an electric field safe for human use. Such a material might one day be incorporated into firefighting gear, athletic uniforms or other wearables. They report their results in a recent issue of Advanced Materials.

Their vertically aligned ferroelectric barium strontium titanate nanowire array can cool about 5.5 degrees Fahrenheit using 36 volts, an electric field level safe for humans. A 500 gram battery pack about the size of an IPad could power the material for about two hours.

The researchers grow the material in two stages. First, titanium dioxide nanowires are grown on fluorine doped tin oxide coated glass. The researchers use a template so all the nanowires grow perpendicular to the glass' surface and to the same height. Then the researchers infuse barium and strontium ions into the titanium dioxide nanowires.

The researchers apply a nanosheet of silver to the array to serve as an electrode.

They can move this nanowire forest from the glass substrate to any substrate they want -- including clothing fabric -- using a sticky tape.

"This low voltage is good enough for modest exercise and the material is flexible," said Wang. "Now we need to design a system that can cool a person and remove the heat generated in cooling from the immediate area."

This solid state personal cooling system may one day become the norm because it does not require regeneration of coolants with ozone depletion and global warming potentials and could be lightweight and flexible.

###

Also working on this project were Guangzu Zhang, Houbing Huang and Qi Li, postdoctoral fellows in materials science and engineering; Xiaoshan Zhang and Jianjun Wang, graduate students in materials science and engineering and Long-Qing Chen, distinguished professor of materials science and engineering, all at Penn State.

The National Science Foundation supported this work.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Possible Futures

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Discoveries

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Announcements

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Research partnerships

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

PROPHESEE Joins IRT Nanoelec 3D Integration Program Will Work with CEA-Leti, STMicroelectronics, Mentor, EVG, and SET to Develop New 3D Event-Based Vision System October 14th, 2019

Borophene on silver grows freely into an atomic ‘skin’: Rice scientists lead effort to improve manufacture of valuable 2D material October 1st, 2019

Machine learning at the quantum lab September 27th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project