Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Breaking metamaterial symmetry with reflected light: A group of UK researchers has discovered a new type of optical activity by breaking the symmetry of metamaterials with reflected light

This gold metamaterial nanostructure is a nanoscale version of the structure described by the University of Southampton researchers in Applied Physics Letters, and it exhibits large specular optical activity for oblique incidence illumination with light (rather than specular optical activity for microwaves).
CREDIT: Eric Plum, Vassili A. Fedotov, and Nikolay I. Zheludev
This gold metamaterial nanostructure is a nanoscale version of the structure described by the University of Southampton researchers in Applied Physics Letters, and it exhibits large specular optical activity for oblique incidence illumination with light (rather than specular optical activity for microwaves).

CREDIT: Eric Plum, Vassili A. Fedotov, and Nikolay I. Zheludev

Abstract:
Optical activity--rotation of the polarization of light--is well known to occur within materials that differ from their mirror image. But what happens if this symmetry is broken by the direction of illumination rather than the material itself?

Breaking metamaterial symmetry with reflected light: A group of UK researchers has discovered a new type of optical activity by breaking the symmetry of metamaterials with reflected light

Washington, DC | Posted on April 5th, 2016

Curiosity about this question has led to the discovery of a new type of optical activity. As a group of University of Southampton researchers report in Applied Physics Letters, from AIP Publishing, breaking the symmetry of metamaterials with reflected light will enable novel applications because it causes optical activity of unprecedented magnitude--far exceeding previously known specular or "mirror-like" optical activity.

At the heart of the group's work are metamaterials--materials constructed with unique shapes and symmetries that generate properties which don't occur in their natural counterparts.

"Natural materials derive their properties from the atoms, ions, or molecules they consist of. Similarly, the basic concept behind metamaterials is to assemble artificial materials from 'metamolecules,' which are manmade elementary building blocks," explained Eric Plum, a research lecturer at the University of Southampton's Optoelectronics Research Centre and Centre for Photonic Metamaterials.

"This provides a huge technological opportunity," Plum pointed out. "Instead of being limited by available natural materials, we can design materials with the properties we want. This has already led to the demonstration of various enhanced and novel material properties and functionalities."

Metamaterials appear homogenous to electromagnetic waves because their artificial structure is of subwavelength size--metamaterials for light are structured on the nanoscale, while those for microwaves are structured on the scale of millimeters or centimeters.

The group is interested in the twisted, or "chiral," structures found within many natural and artificial materials because they come with the ability to rotate the polarization state of transmitted light--a property known as optical activity. This property is the basis for applications ranging from LCD displays to spectroscopy, and even detection of life during space missions.

While the optical activity for light reflected by natural materials is negligible, the researchers found that the same isn't at all true for metamaterials.

"Our metamaterial exhibits huge optical activity for reflected electromagnetic waves," Plum said. "This is particularly remarkable considering that our artificial structure is extremely thin--30 times thinner than the wavelength of the electromagnetic radiation it manipulates."

Perhaps just as surprising, the optically active material involved isn't actually chiral. "Instead, optical activity arises from a chiral experimental arrangement associated with the mutual orientation of the direction of the illumination and the structure of the metamaterial, which lacks two-fold rotational symmetry," he elaborated.

The group's discovery paves the way for "a whole new class of extremely thin and light devices for controlling and detecting the polarization of light, such as polarization rotating and circularly polarizing beam splitters and mirrors, as well as optical isolators for circularly polarized light," Plum said.

In terms of more fundamental implications, the group's observed effect mimics the longitudinal magneto-optical Kerr effect--in which the light reflected from a magnetized surface can change in both reflected intensity and polarity - without a magnetized medium.

"This has significant implications for Kerr microscopy, because it could be mistaken for magnetization," he added.

Plum and colleagues are now busy developing practical solutions to enable dynamic control of specular optical activity for applications such as active polarization modulation.

"It would also be interesting to study the effect in natural materials and to explore the consequences of similar types of 'symmetry breaking' of other physical systems," Plum said.

####

About American Institute of Physics
pplied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. apl.aip.org

For more information, please click here

Contacts:
AIP Media Line

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Specular optical activity of achiral metasurfaces," is authored by Eric Plum, Vassili A. Fedotov and Nikolay I. Zheludev. It will appear in the journal of Applied Physics Letters April 5, 2016 [DOI: 10.1063/1.4944775]. After that date, it can be accessed at:

Related News Press

News and information

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Imaging

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Better microring sensors for optical applications May 10th, 2019

Discoveries

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Materials/Metamaterials

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Building next gen smart materials with the power of sound May 28th, 2019

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Announcements

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Tools

University of Aberdeen use the Deben CT5000 to observe compressive damage mechanisms in syntactic foam June 14th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

nPoint piezo driven nanopositioning flexure stages now available from Elliot Scientific June 4th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Photonics/Optics/Lasers

New record: 3D-printed optical-electronic integration June 18th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project