Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nature-inspired nanotubes that assemble themselves, with precision: Berkeley Lab scientists discover another design principle for building nanostructures

Precision meets nano-construction, as seen in this illustration. Berkeley Lab scientists discovered a peptoid composed of two chemically distinct blocks (shown in orange and blue) that assembles itself into nanotubes with uniform diameters.
CREDIT: Berkeley Lab
Precision meets nano-construction, as seen in this illustration. Berkeley Lab scientists discovered a peptoid composed of two chemically distinct blocks (shown in orange and blue) that assembles itself into nanotubes with uniform diameters.

CREDIT: Berkeley Lab

Abstract:
When it comes to the various nanowidgets scientists are developing, nanotubes are especially intriguing. That's because hollow tubes that have diameters of only a few billionths of a meter have the potential to be incredibly useful, from delivering cancer-fighting drugs inside cells to desalinating seawater.

Nature-inspired nanotubes that assemble themselves, with precision: Berkeley Lab scientists discover another design principle for building nanostructures

Berkeley, CA | Posted on March 29th, 2016

But building nanostructures is difficult. And creating a large quantity of nanostructures with the same trait, such as millions of nanotubes with identical diameters, is even more difficult. This kind of precision manufacturing is needed to create the nanotechnologies of tomorrow.

Help could be on the way. As reported online the week of March 28 in the journal Proceedings of the National Academy of Sciences, researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a family of nature-inspired polymers that, when placed in water, spontaneously assemble into hollow crystalline nanotubes. What's more, the nanotubes can be tuned to all have the same diameter of between five and ten nanometers, depending on the length of the polymer chain.

The polymers have two chemically distinct blocks that are the same size and shape. The scientists learned these blocks act like molecular tiles that form rings, which stack together to form nanotubes up to 100 nanometers long, all with the same diameter.

"This points to a new way we can use synthetic polymers to create complex nanostructures in a very precise way," says Ron Zuckermann, who directs the Biological Nanostructures Facility in Berkeley Lab's Molecular Foundry, where much of this research was conducted.

Several other Berkeley Lab scientists contributed to this research, including Nitash Balsara of the Materials Sciences Division and Ken Downing of the Molecular Biophysics and Integrated Bioimaging Division.

"Creating uniform structures in high yield is a goal in nanotechnology," adds Zuckermann. "For example, if you can control the diameter of nanotubes, and the chemical groups exposed in their interior, then you can control what goes through--which could lead to new filtration and desalination technologies, to name a few examples."

The research is the latest in the effort to build nanostructures that approach the complexity and function of nature's proteins, but are made of durable materials. In this work, the Berkeley Lab scientists studied a polymer that is a member of the peptoid family. Peptoids are rugged synthetic polymers that mimic peptides, which nature uses to form proteins. They can be tuned at the atomic scale to carry out specific functions.

For the past several years, the scientists have studied a particular type of peptoid, called a diblock copolypeptoid, because it binds with lithium ions and could be used as a battery electrolyte. Along the way, they serendipitously found the compounds form nanotubes in water. How exactly these nanotubes form has yet to be determined, but this latest research sheds light on their structure, and hints at a new design principle that could be used to build nanotubes and other complex nanostructures.

Diblock copolypeptoids are composed of two peptoid blocks, one that's hydrophobic one that's hydrophilic. The scientists discovered both blocks crystallize when they meet in water, and form rings consisting of two to three individual peptoids. The rings then form hollow nanotubes.

Cryo-electron microscopy imaging of 50 of the nanotubes showed the diameter of each tube is highly uniform along its length, as well as from tube to tube. This analysis also revealed a striped pattern across the width of the nanotubes, which indicates the rings stack together to form tubes, and rules out other packing arrangements. In addition, the peptoids are thought to arrange themselves in a brick-like pattern, with hydrophobic blocks lining up with other hydrophobic blocks, and the same for hydrophilic blocks.

"Images of the tubes captured by electron microscopy were essential for establishing the presence of this unusual structure," says Balsara. "The formation of tubular structures with a hydrophobic core is common for synthetic polymers dispersed in water, so we were quite surprised to see the formation of hollow tubes without a hydrophobic core."

X-ray scattering analyses conducted at beamline 7.3.3 of the Advanced Light Source revealed even more about the nanotubes' structure. For example, it showed that one of the peptoid blocks, which is usually amorphous, is actually crystalline.

Remarkably, the nanotubes assemble themselves without the usual nano-construction aids, such as electrostatic interactions or hydrogen bond networks.

"You wouldn't expect something as intricate as this could be created without these crutches," says Zuckermann. "But it turns out the chemical interactions that hold the nanotubes together are very simple. What's special here is that the two peptoid blocks are chemically distinct, yet almost exactly the same size, which allows the chains to pack together in a very regular way. These insights could help us design useful nanotubes and other structures that are rugged and tunable--and which have uniform structures."

###

The Advanced Light Source and the Molecular Foundry are DOE Office of Science User Facilities located at Berkeley Lab.

The research was supported by the Department of Energy's Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Dan Krotz

510-486-4019

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Imaging

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

Laboratories

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

NIST physicists 'teleport' logic operation between separated ions May 30th, 2019

Rice U. lab grows stable, ultrathin magnets: Rare iron oxide could be combined with 2D materials for electronic, spintronic devices May 24th, 2019

Govt.-Legislation/Regulation/Funding/Policy

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

A molecular glue to overcome cancer drug resistance? Small molecule drug may prevent chemotherapy resistance June 7th, 2019

Possible Futures

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Perfect diamagnetism observation of high-temperature superconductivity in compressed H2S June 14th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

Making graphene-based desalination membranes less prone to defects, better at separating June 13th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Self-powered wearable tech May 8th, 2019

Nanomedicine

A molecular glue to overcome cancer drug resistance? Small molecule drug may prevent chemotherapy resistance June 7th, 2019

Arrowhead Pharmaceuticals to Present at Upcoming June 2019 Conferences June 2nd, 2019

Chemists build a better cancer-killing drill: Rice U.-designed molecular motors get an upgrade for activation with near-infrared light May 29th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Discoveries

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Materials/Metamaterials

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Building next gen smart materials with the power of sound May 28th, 2019

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Announcements

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Perfect diamagnetism observation of high-temperature superconductivity in compressed H2S June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Tools

University of Aberdeen use the Deben CT5000 to observe compressive damage mechanisms in syntactic foam June 14th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

nPoint piezo driven nanopositioning flexure stages now available from Elliot Scientific June 4th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Water

Making graphene-based desalination membranes less prone to defects, better at separating June 13th, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Defects help nanomaterial soak up more pollutant in less time: Rice U. researchers find new way to remove PFOS from industrial wastewater March 13th, 2019

Nanobiotechnology

DNA origami to scale-up molecular motors June 13th, 2019

A molecular glue to overcome cancer drug resistance? Small molecule drug may prevent chemotherapy resistance June 7th, 2019

Arrowhead Pharmaceuticals to Present at Upcoming June 2019 Conferences June 2nd, 2019

Chemists build a better cancer-killing drill: Rice U.-designed molecular motors get an upgrade for activation with near-infrared light May 29th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project