Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Drexel researchers roll out new method for making the invisible brushes that repel dirt: Polymer crystal 'turf' improves nanobrush-making process

Drexel materials scientist Christopher Li, Ph.D., reports a new way for making polymer nanobrushes that equates to growing a lawn by rolling out sod instead of planting seeds.
CREDIT: Drexel University
Drexel materials scientist Christopher Li, Ph.D., reports a new way for making polymer nanobrushes that equates to growing a lawn by rolling out sod instead of planting seeds.

CREDIT: Drexel University

Abstract:
You might not be aware of it, but invisible carpets of polymers are keeping things from being sticky right now. The lenses of your glasses might be coated with them to stave off smudges. They're keeping the underbellies of ships from corroding, artificial joints from locking up and medical devices from gathering germs. The name "polymer nanobrush" doesn't seem fitting because these bristly materials aren't used to sweep away debris, they actually prevent it from accumulating at all.

Drexel researchers roll out new method for making the invisible brushes that repel dirt: Polymer crystal 'turf' improves nanobrush-making process

Philadelphia, PA | Posted on March 24th, 2016

The science behind their production sounds a lot like turf management on a golf course. But for years it's been done one blade -- or bristle -- at a time, or by sprinkling some seeds and hoping for the best. Materials scientists from Drexel University have planted a new idea -- that they can make better brushes by rolling them out like sod.

Until recently, polymer brushes have been made in two main ways. One, called "grafting-from," is like sprinkling seeds on soil and waiting for grass to take root. The other, "grafting-to" is more like transplanting individual blades of grass. In a recent edition of Nature Communications, Christopher Li, PhD, a professor in Drexel's College of Engineering, explains his new method for brush making that's gives scientists a higher degree of control over the shape of the brush and bristles, and is much more efficient.

Li's approach involves growing a functional two-dimensional sheet of polymer crystals -- similar to a nanoscale piece of double-sided tape. When the sheet is stuck to an existing substrate, and the crystals are dissolved, the remaining polymer chains spring up, forming the bristles of the brush.

"The past few decades witnessed exciting progresses in studies on polymer brushes, and they show great promises in various fields, including coating, biomedical, sensing, catalysis to name just a few," said Li, whose research in the Drexel Soft Materials Lab focuses on materials that have complex structural and dynamic properties -- like polymer brushes. "We believe that our discovery of a new way to make polymer brushes is a significant advance in the field and will enable use of the brushes in exciting new ways."

Polymer brush materials are especially useful in situations where pieces need to fit tightly together but need to be able to move without friction throwing a wrench in the works. They are also effective for keeping important surfaces free of particles, chemicals, proteins and other fouling agents. Polymer brushes have been used to coat everything from eyeglass lenses, boats and medical devices -- where they keep away smudges, damaging chemicals and germs -- to artificial joints and mechanical components in vehicles -- where they act as a lubricant.

The relative amount of friction that can be reduced by the brushes has to do with how long and rigid the polymers are and how far apart they're spaced. Li's method is significant because he can precisely tune all of these characteristics because he can control the formation of the two-dimensional crystal sheets. In the paper he reports the creation of the most densely packed polymer brushes to date, with bristles less than a nanometer apart.

"These surface-functionalized 2D single crystals provide a unique opportunity for the synthesis of well-defined polymer brushes," Li said. "The key step in our method is pre-assembling polymers into polymer single crystals before coupling them onto the substrate."

For Li's group -- which has pioneered research in growing spherical crystals, and solid polymer electrolytes for energy storage -- controlling the formation of crystalized polymers for an application like this is almost second nature.

According to the paper, the team is even able to create polymer crystals with anchor points on both ends so they form a loop, which is a much sturdier bristle formation than a single-anchored polymer.

"What this all means is that one day engineers will be able to tailor-make incredibly durable polymer brush coatings to extend the usage lives of all kinds of uniquely shaped joints and couplings," Li said. "This shifts the way we look at making the brushes and I think it will have a lasting impact on this area of research."

####

For more information, please click here

Contacts:
Britt Faulstick

215-895-2617

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Marine/Watercraft

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Quantum tech in space? Scientists design remote monitoring system for inaccessible quantum devices February 11th, 2022

Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project