Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanocrystal self-assembly sheds its secrets: A new approach gives a real-time look at how the complex structures form

A scanning electron micrograph of a nanocrystal superlattice shows long-range ordering over large domains.

Image courtesy of the Tisdale Lab.
A scanning electron micrograph of a nanocrystal superlattice shows long-range ordering over large domains.

Image courtesy of the Tisdale Lab.

Abstract:
The secret to a long-hidden magic trick behind the self-assembly of nanocrystal structures is starting to be revealed.

Nanocrystal self-assembly sheds its secrets: A new approach gives a real-time look at how the complex structures form

Cambridge, MA | Posted on March 22nd, 2016

The transformation of simple colloidal particles — bits of matter suspended in solution — into tightly packed, beautiful lace-like meshes, or superlattices, has puzzled researchers for decades. Pretty pictures in themselves, these tiny superlattices, also called quantum dots, are being used to create more vivid display screens as well as arrays of optical sensory devices. The ultimate potential of quantum dots to make any surface into a smart screen or energy source hinges, in part, on understanding how they form.

Through a combination of techniques including controlled solvent evaporation and synchrotron X-ray scattering, the real time self-assembly of nanocrystal structures has now become observable in-situ. The findings were reported in the journal Nature Materials in a paper by Assistant Professor William A. Tisdale and grad student Mark C. Weidman, both at MIT’s Department of Chemical Engineering, and Detlef-M. Smilgies at the Cornell High Energy Synchrotron Source (CHESS).

The researchers anticipate their new findings will have implications for the direct manipulation of resulting superlattices, with the possibility of on-demand fabrication and the potential to generate principles for the formation of related soft materials such as proteins and polymers.

Quantum dot disco

Tisdale and his colleagues are among the many groups who study hard semiconductor nanocrystals with surfaces coated with organic molecules. These solution-processable electronic materials are on store shelves now under a variety of names, incorporated into everything from lighting displays to TVs. They also are being eyed for making efficient solar cells and other energy conversion devices due to their ease of fabrication and low-cost manufacturing processes.

The broader adoption of these nanocrystals into other energy conversion technologies has been limited, in part, by the lack of knowledge about how they self-assemble, going from colloidal particles (like tiny Styrofoam balls suspended in a liquid) to superlattices (picture those same balls now dry, packed, and aligned).
Techniques including electron microscopy and dynamic light scattering have uncovered some aspects of the starting colloidal state and the final superlattice structure, but they have not illuminated the transition between these two states. In fact, such foundational work dates back to the mid-1990s with Moungi Bawendi’s group at MIT.

“In the past 10 to 15 years, a lot of progress has been made in making very beautiful nanocrystal structures,” Tisdale says. “However, there’s still a lot of debate about why they assemble into each configuration. Is it ligand entropy or the faceting of the nanocrystals? The depth of information provided by watching the entire self-organization process unfold in real time can help answer these questions.”

Chamber of secrets

To make the nanoscale movie above, Tisdale’s graduate student and co-author Mark Weidman took advantage of a Cornell-developed experimental chamber and a recently developed dual detector setup with two fast area detectors, while environmental conditions were changed during the formation of superlattices. Using lead sulfide nanocrystals, Weidman was able to conduct simultaneous small-angle X-ray scattering (capturing the structure of the superlattice) and wide-angle X-ray scattering (capturing atomic scale orientation and alignment of single particles) observations during the evaporation of a solvent.

“We believe this was the first experiment that has allowed us to watch in real time and in a native environment how self-assembly occurs,” Tisdale says. “These experiments would not have been possible without the experimental capabilities developed by Detlef and the CHESS team.”

The use of nanocrystals with a heavy element (lead) and the brightness of the synchrotron X-ray source enabled sufficiently fast data collection that self-assembly could be observed in real time, resulting in compelling images and movies of the process.

A fine mesh

The discovery may lead to refined models for self-assembly of a wide range of organic soft materials. Moreover, the ability to watch the structure as it is evolving in real time also holds promise for intervening or directing the system into desired configurations, presaging a future how-to guide for creating superlattices.

Tisdale says that much more work needs to be done to gain insights about why nanocrystals self-assemble they way they do. He and his team plan to use their new technique to manipulate parameters such as solvent conditions as well as the size and shape of nanocrystals, and to more closely study the ligands on the surface as they seem to be the key driver for self-assembly.

“We hope that this study and technique will help to increase our understanding of colloidal self-assembly and, in the long term, enable us to direct nanoscale self-assembly toward a desired structure,” Weidman adds.
The work was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Basic Energy Sciences. The Cornell High Energy Synchrotron Source (CHESS) is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences.

####

For more information, please click here

Contacts:
Michael Rutter
Email:
Phone: 617-715-2400
MIT School of Engineering

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project