Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The 'great smoky dragon' of quantum physics

In the 1970s, the American physicist John Archibald Wheeler (1911–2008) metaphorically compared the fundamental indefiniteness of quantum mechanical phenomena with a "great smoky dragon": One can see the tail, that is the source of the particles, and the head, which are the measurement results. But in between the whole body is covered in smoke Copyright: Xiao-song Ma
In the 1970s, the American physicist John Archibald Wheeler (1911–2008) metaphorically compared the fundamental indefiniteness of quantum mechanical phenomena with a "great smoky dragon": One can see the tail, that is the source of the particles, and the head, which are the measurement results. But in between the whole body is covered in smoke

Copyright: Xiao-song Ma

Abstract:
Since the 17th century, science was intrigued by the nature of light. Isaac Newton was certain that it consists of a stream of particles. His contemporary Christiaan Huygens, however, argued that light is a wave. Modern quantum physics says that both were right. Light can be observed both as particles and as waves -- depending which characteristic is measured in an experiment, it presents itself more as one or the other. This so-called wave-particle dualism is one of the foundational principles of quantum physics. This questions our common sense: can one and the same indeed be of two contradictory natures at the same time?

The 'great smoky dragon' of quantum physics

Vienna, Austria | Posted on March 13th, 2016

Measuring the undefined

In the 1970s, the American physicist John Archibald Wheeler (1911-2008) metaphorically compared the fundamental indefiniteness of quantum mechanical phenomena with a "great smoky dragon": One can see the tail, that is the source of the particles, and the head, which are the measurement results. But in between the whole body is covered in smoke. And this smoke cannot be removed: Only the measurement defines the phenomenon, not the other way round. To put this concept into a concrete setting, Wheeler proposed his famous delayed-choice thought experiment. In this thought experiment, the choice to determine the particle or wave nature is delayed or even changed during the experiment. Thereby, one and the same phenomenon, for instance light, manifests itself as a particle or as a wave in the same experiment. It can therefore indeed be both, depending on the time and nature of the measurement.

In the past decades, quantum physicists have tried to experimentally test Wheeler's thought experiment to empirically substantiate the wave-particle duality. Xiao-song Ma from the Nanjing University, Johannes Kofler from the Max Planck Institute of Quantum Optics, and Anton Zeilinger from the University of Vienna and the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences have now shown the success of this endeavor in an extensive study, which sums up and evaluates the whole history of delayed choice experiments.

While the concept of wave-particle duality can be traced back to Albert Einstein's explanation of the photoelectric effect via photons in 1905, it took until the 1980s that the first delayed-choice experiments were realized. "Only through the development of modern quantum optical techniques for the fast and precise measurement of light it was possible to put Wheeler's thought experiment into practice", says Xiao-song Ma, lead author of the study.

Important for quantum cryptography and quantum computers

"Experiments of this kind confront us with fundamental questions of quantum physics", adds Anton Zeilinger. "However, they also have significance for future applications such as in quantum cryptography or the development of quantum computers." Delayed-choice experiments can be applied to the quantum mechanical phenomenon of entanglement, which is important for the security of quantum communication. Regarding quantum computers, there are certain scenarios where delayed-choice experiments can increase the computation speed. The authors of the study, which now appeared in the journal Reviews of Modern Physics, expect that delayed-choice experiments will continue to bring further insights into quantum physics as well as practical applications for technologies basing on them.

####

For more information, please click here

Contacts:
Xiao-song Ma

86-258-359-2270

Copyright © University of Vienna

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

PUBLICATION

Related News Press

Quantum Physics

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Quantum Computing

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project