Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > IBS team suppresses oxidative stress and neuronal death associated with Alzheimer's disease: The Center for Nanoparticle Research designs mitochondria-specific ceria nanoparticles (CeO2 NP) capable of suppressing neuronal cell death in test subjects

Figure 2: (L) A healthy brain (R) An AD affected brain.
CREDIT: IBS
Figure 2: (L) A healthy brain (R) An AD affected brain.

CREDIT: IBS

Abstract:
The brain is an enormous network of communication, containing over 100 billion nerve cells, or neurons, with branches that connect at more than 100 trillion points. They are constantly sending signals through a vast neuron forest that forms memories, thoughts and feelings; these patterns of activity form the essence of each person. Alzheimer's disease (AD) disrupts both the way electrical charges travel within cells and the activity of neurotransmitters. An AD brain has fewer nerve cells and synapses than a healthy brain; plaques and abnormal clusters of protein fragments accumulate between nerve cells. The major pathological indicators of AD are the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain. The pathways in our neuron forest are systemically attacked and destroyed by amyloid beta (Aβ): a solitary molecule that evolves into plaque clusters, which block cell-to-cell signalling at synapses. They may also activate immune system cells that result in inflammation and destroy damaged cells.

IBS team suppresses oxidative stress and neuronal death associated with Alzheimer's disease: The Center for Nanoparticle Research designs mitochondria-specific ceria nanoparticles (CeO2 NP) capable of suppressing neuronal cell death in test subjects

Daejeon, Kore | Posted on February 25th, 2016

Deterioration of the Brain

In a healthy brain, orderly parallel strands, akin to railroad tracks, permit nutrients and essential proteins to move between cells. The protein tau helps these tracks remain intact and functioning. In an AD affected brain tau breaks down, collapses and forms tangles that prevent transmission along the tracks. The tracks fall apart and disintegrate. Essential proteins, including nutrients, can no longer reach brain cells, which eventually die. The plaques and tangles described above are currently the leading working theory explaining the cell death and tissue loss found in an AD brain, though the theory is yet to be irrefutably confirmed. The effects of AD on the brain, however, are well known: brain cells slowly disintegrate, the disease progressively invades different parts of the brain, creating unique changes that signal the various stages of Alzheimer's. Short term memory loss, logical thoughts and emotions are all obstructed, fundamentally altering and ultimately eradicating an affected individual's personality. Over time, Alzheimer's leads to nerve cell death and dramatic shrinking of the brain, which affects nearly all of its functions.

Stemming Tangles and Plaques

The scientific team from the Center for Nanoparticle Research within the Institute for Basic Science (IBS) has developed a novel mitochondria-targeting ceria nanoparticle that can effectively impede the process of neuronal cell death, in collaboration with the research group of Seoul National University led by professor Inhee Mook. Cells in our brain are powered by mitochondria; tiny power plants within cells that produce a body's essential energy, which is required for each cell to function. Reactive oxygen species (ROS) are formed as a natural by-product of normal metabolism of oxygen. Abnormal generations of ROS, resulting from mitochondrial dysfunction, can lead to neuronal cell death. Additionally, Aβ-induced mitochondrial dysfunction also has been known to be a possible cause of AD through abnormal production of ROS. Ceria nanoparticles function as known to function as strong and recyclable ROS scavengers, eliminating abnormal ROS, by shuttling between Ce3+ and Ce4+ oxidation states.

Suppressing Neuronal Death

The research team, under the direction of the IBS Center's director Taeghwan Hyeon, synthesized a ceria nanoparticle, mitochondria-specific antioxidant and investigated the effect of the new therapeutic agent in suppressing the pathogenesis of AD using an in vivo mouse model. The team introduced the powerful ceria nanoparticles (CeO2 NP) to mitochondria by using small, mitochondria-targeting materials (triphenylphosphonium-conjugating) and recorded quite remarkable results in a transgenic AD mouse model. Two months after the mouse was injected, positive cells were quantified. According to the results, published online in ACS Nano on February 11, the CeO2 NPs localised to mitochondria had effectively suppressed neuronal death in the mouse model, demonstrating that the administration of mitochondria-targeting ceria NPs significantly restored neuronal viability of the AD-affected mouse. Since the accumulation of Aβ did not differ significantly between the brains of the affected and non-treated mouse, it is concluded that the mitochondria-targeting ceria NPs ameliorate the neuronal damage of the test subject in an indirect way, independent of the Aβ accumulation. The team's paper stressed that the data "indicated that the mitochondria-targeting ceria NPs are a potential therapeutic candidate for treating mitochondrial oxidative-stress-induced damage in AD." Director Hyeon said, "This study is quite remarkable in that the collaborative research between nano science and biomedical science has led to the development of a potent therapeutic agent against reactive oxygen species in the mitochondria, which is deemed to be one of major culprits in a number of diseases.

####

For more information, please click here

Contacts:
Dahee Carol Kim

82-428-788-133

Copyright © Institute for Basic Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanomedicine

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3ís significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Discoveries

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Announcements

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Nanobiotechnology

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3ís significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project