Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Moving electrons around loops with light: A quantum device based on geometry: Scientists demonstrate versatile, noise-tolerant quantum operations on a single electron

This artist's rendition shows a laser light guiding the evolution of an electronic spin within an atomic-scale defect in diamond. These light-driven loops give rise to a geometric phase, a quantum logic operation that shows remarkable resilience to noise.
CREDIT: Peter Allen
This artist's rendition shows a laser light guiding the evolution of an electronic spin within an atomic-scale defect in diamond. These light-driven loops give rise to a geometric phase, a quantum logic operation that shows remarkable resilience to noise.

CREDIT: Peter Allen

Abstract:
While a classical bit found in conventional electronics exists only in binary 1 or 0 states, the more resourceful quantum bit, or 'qubit' is represented by a vector, pointing to a simultaneous combination of the 1 and 0 states. To fully implement a qubit, it is necessary to control the direction of this qubit's vector, which is generally done using fine-tuned and noise-isolated procedures.

Moving electrons around loops with light: A quantum device based on geometry: Scientists demonstrate versatile, noise-tolerant quantum operations on a single electron

Chicago, IL | Posted on February 22nd, 2016

Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that - surprisingly -- is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond.

Their findings were published online Feb. 15, 2016, in Nature Photonics and will appear in the March print issue. "We tend to view quantum operations as very fragile and susceptible to noise, especially when compared to conventional electronics," remarked David Awschalom, the Liew Family Professor of Molecular Engineering and senior scientist at Argonne National Laboratory, who led the research. "In contrast, our approach shows incredible resilience to external influences and fulfills a key requirement for any practical quantum technology."

Quantum geometry

When a quantum mechanical object, such as an electron, is cycled along some loop, it retains a memory of the path that it travelled, the Berry phase. To better understand this concept, the Foucault pendulum, a common staple of science museums helps to give some intuition. A pendulum, like those in a grandfather clock, typically oscillates back and forth within a fixed plane. However, a Foucault pendulum oscillates along a plane that gradually rotates over the course of a day due to Earth's rotation, and in turn knocks over a series of pins encircling the pendulum.

The number of knocked-over pins is a direct measure of the total angular shift of the pendulum's oscillation plane, its acquired geometric phase. Essentially, this shift is directly related to the location of the pendulum on Earth's surface as the rotation of Earth transports the pendulum along a specific closed path, its circle of latitude. While this angular shift depends on the particular path traveled, Awschalom said, it remarkably does not depend on the rotational speed of Earth or the oscillation frequency of the pendulum.

"Likewise, the Berry phase is a similar path-dependent rotation of the internal state of a quantum system, and it shows promise in quantum information processing as a robust means to manipulate qubit states," he said.

A light touch

In this experiment, the researchers manipulated the Berry phase of a quantum state within a nitrogen-vacancy (NV) center, an atomic-scale defect in diamond. Over the past decade and a half, its electronic spin state has garnered great interest as a potential qubit. In their experiments, the team members developed a method with which to draw paths for this defect's spin by varying the applied laser light. To demonstrate Berry phase, they traced loops similar to that of a tangerine slice within the quantum space of all of the potential combinations of spin states.

"Essentially, the area of the tangerine slice's peel that we drew dictated the amount of Berry phase that we were able to accumulate," said Christopher Yale, a postdoctoral scholar in Awschalom's laboratory, and one of the co-lead authors of the project.

This approach using laser light to fully control the path of the electronic spin is in contrast to more common techniques that control the NV center spin, through the application of microwave fields. Such an approach may one day be useful in developing photonic networks of these defects, linked and controlled entirely by light, as a way to both process and transmit quantum information.

A noisy path

A key feature of Berry phase that makes it a robust quantum logic operation is its resilience to noise sources. To test the robustness of their Berry phase operations, the researchers intentionally added noise to the laser light controlling the path. As a result, the spin state would travel along its intended path in an erratic fashion. However, as long as the total area of the path remained the same, so did the Berry phase that they measured.

"In particular, we found the Berry phase to be insensitive to fluctuations in the intensity of the laser. Noise like this is normally a bane for quantum control," said Brian Zhou, a postdoctoral scholar in the group, and co-lead author.

"Imagine you're hiking along the shore of a lake, and even though you continually leave the path to go take pictures, you eventually finish hiking around the lake," said F. Joseph Heremans, co-lead author, and now a staff scientist at Argonne National Laboratory. "You've still hiked the entire loop regardless of the bizarre path you took, and so the area enclosed remains virtually the same."

These optically controlled Berry phases within diamond suggest a route toward robust and fault-tolerant quantum information processing, noted Guido Burkard, professor of physics at the University of Konstanz and theory collaborator on the project.

"Though its technological applications are still nascent, Berry phases have a rich underlying mathematical framework that makes them a fascinating area of study," Burkard said.

####

For more information, please click here

Contacts:
Steve Koppes

773-702-8366

Copyright © University of Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Quantum Physics

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

Quantum Physics in Proteins: Artificial intelligence affords unprecedented insights into how biomolecules work November 5th, 2021

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2 November 5th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Light speed advances: UD Prof. Tingyi Gu receives DARPA Young Faculty Award December 3rd, 2021

Immune system-stimulating nanoparticle could lead to more powerful vaccines: The potent new adjuvant could be used to help make vaccines against HIV and other infectious diseases December 3rd, 2021

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

Energizer atoms: JILA researchers find new way to keep atoms excited November 19th, 2021

Possible Futures

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Spintronics

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2 November 5th, 2021

A new dimension in magnetism and superconductivity launched November 5th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Chip Technology

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Visualizing temperature transport: An unexpected technique for nanoscale characterization November 19th, 2021

Quantum Computing

Optimized method to detect high-dimensional entanglement December 3rd, 2021

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2 November 5th, 2021

Photon-pair source with pump rejection filter fabricated on single CMOS chip: New integrated source provides critical component for chip-based quantum photonic systems October 15th, 2021

Discoveries

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Announcements

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Military

Light speed advances: UD Prof. Tingyi Gu receives DARPA Young Faculty Award December 3rd, 2021

Immune system-stimulating nanoparticle could lead to more powerful vaccines: The potent new adjuvant could be used to help make vaccines against HIV and other infectious diseases December 3rd, 2021

Energizer atoms: JILA researchers find new way to keep atoms excited November 19th, 2021

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Photonics/Optics/Lasers

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project