Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing

The first ever observations of polar vortices in a ferroelectic material could find potential applications in ultracompact data storage and processing and the production of new states of matter.
CREDIT: Berkeley Lab
The first ever observations of polar vortices in a ferroelectic material could find potential applications in ultracompact data storage and processing and the production of new states of matter.

CREDIT: Berkeley Lab

Abstract:
The observation in a ferroelectric material of "polar vortices" that appear to be the electrical cousins of magnetic skyrmions holds intriguing possibilities for advanced electronic devices. These polar vortices, which were theoretically predicted more than a decade ago, could also "rewrite our basic understanding of ferroelectrics" according to the researchers who observed them.

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing

Berkeley, CA | Posted on February 4th, 2016

A team of scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have recorded the first ever observations of rotating topologies of electrical polarization that are similar to the discrete swirls of magnetism known as "skyrmions." If these smoothly rotating vortex/anti-vortex topologies prove to be electrical skyrmions, they could find potential applications in ultracompact data storage and processing, and could also lead to the production of new states of matter and associated phenomena in ferroic materials.

"It has long been thought that rotating topological structures are confined to magnetic systems and aren't possible in ferroelectric materials, but through the creation of artificial superlattices, we have controlled the various energies of a ferrolectric material to promote competition that lead to such new states of matter and polarization arrangements," says Ramamoorthy Ramesh, Berkeley Lab's Associate Laboratory Director for Energy Technologies and the co-principal investigator for this study. He also holds UC Berkeley's Purnendu Chatterjee Endowed Chair in Energy Technologies.

"Ferroelectric materials such as the materials used in this work

have produced a number of exciting emergent properties over the years, but these smoothly-rotating polar vortex structures really are different," says Lane Martin, a faculty scientist with Berkeley Lab's Materials Sciences Division and Associate Professor in UC Berkeley's Department of Materials Science and Engineering, who is this study's co-principal investigator. "I think if you surveyed the community many would shake their heads in disbelief at such structures, but it turns out there really is a tendency for vortex states to form in nature even in these polar systems. And, when one looks more broadly, vortex structures can occur across huge length scales - from galaxies and weather systems all the way down to 10s of atoms as in our case."

Ramesh and Martin are the corresponding authors of a Nature paper describing this study in detail. The paper is titled "Observation of Polar Vortices in Oxide Superlattices." The lead researchers on this work are Ajay Yadav, Christopher Nelson, and Anoop Damodaran who also hold joint appointments with Berkeley Lab and UC Berkeley. (Full list of authors below.)

Ferroic materials display unique electrical or magnetic properties - or both in the case of multiferroics. For example, the electrical field of a ferroelectric material can be polarized in favor of either a positive or negative charge with the application of an external electrical field. In a ferromagnetic material, the application of an external magnetic field aligns the spin of their charged particles, resulting in the material becoming a permanent magnet. In recent years, it was discovered that the application of an external magnetic field can also produce atom-sized cyclones of skyrmions, which act like baryon particles and can be moved coherently over macroscopic distances. These properties make skyrmions excellent candidates for spintronic applications.

"We believe the polar vortices we observed in ferroelectrics, when fully explored, have the potential to be topological states of matter that are similar to magnetic skyrmions," Ramesh says. "The fact that our polar vortices can display emergent behavior in their electronic, optical, magnetic and other properties suggests that heretofore unexplored applications and functionalities could be possible."

Ramesh, Martin and their collaborators worked with what has become a canonical system in the community, ultrafine layered structures built from lead titanate and strontium titante compounds controlled down to a few unit cells each, in which each unit cell is approximately 0.4 nanometers thick. They created superlattices that harbored a three-way competition between elastic, electrostatic and gradient energies within the layers of lead titanate and strontium titanate. This unique three-way competition gives rise to the polar vortices.

"As we tune the period lengths of our superlattices, we can tune the relative importance of these three energy scales," Martin says. "Although rather exotic things can occur if one changes the superlattice period to be both smaller and bigger than we studied here, we really found the 'sweet-spot' in this work that produced these polar vortices which are an entirely new phenomenon."

A combination of scanning transmission electron microscopy (STEM) and X-ray diffraction studies were used observe and characterize the polar vortices. The STEM work was carried out at Berkeley Lab's Molecular Foundry, a DOE Office of Science User Facility, on TEAM 0.5, the world's most powerful transmission electron microscope. The X-ray diffraction work was carried out at the Advanced Photon Source, another DOE Office of Science User Facility, which is hosted by DOE's Argonne National Laboratory.

"Our study is really indicative of how DOE-funded research programs can bring together a diverse range of expertise, including atomically-controlled materials synthesis and cutting-edge research facilities, and materials theory to enable foundational discoveries that really change the way we think about exotic materials and the possibilities for using them," says Ramesh.

"This is just the beginning for the study of polar vortices in ferroelectric materials," Martin says. "We're observing a new state of matter and we have our work cut out for us in mapping and understanding how it evolves. We can imagine adding a magnetic spin component to similar superlattices and thus potentially paving a pathway to fundamentally demonstrate electric-field control of magnetism."

###

Other co-authors of the Nature paper were Shang-Lin Hsu, Zijian Hong, James Clarkson, Christian Schlepüetz, Anoop Damodaran, Padraic Shafer, Elke Arenholz, Liv Dedon, Deyang Chen, Ashvin Vishwanath, Andrew Minor, Long-Qing Chen and Jason Scott.

This research was primarily funded by the DOE Office of Science.

####

For more information, please click here

Contacts:
Lynn Yarris

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Magnetism/Magnons

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project