Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum knots are real!

Visualization of the structure of the created quantum knot. Each colorful band represents a set of nearby directions of the quantum field that is knotted. Note that each band is twisted and linked with the others once. Untying the knot requires the bands to separate, which is not possible without breaking them.
CREDIT: David Hall
Visualization of the structure of the created quantum knot. Each colorful band represents a set of nearby directions of the quantum field that is knotted. Note that each band is twisted and linked with the others once. Untying the knot requires the bands to separate, which is not possible without breaking them.

CREDIT: David Hall

Abstract:
The very first experimental observations of knots in quantum matter have just been reported in Nature Physics by scientists at Aalto University (Finland) and Amherst College (USA). The scientists created knotted solitary waves, or knot solitons, in the quantum-mechanical field describing a gas of superfluid atoms, also known as a Bose-Einstein condensate.

Quantum knots are real!

Aalto, Finland | Posted on January 20th, 2016

In contrast to knotted ropes, the created quantum knots exist in a field that assumes a certain direction at every point of space. The field segregates into an infinite number of linked rings, each with its own field direction. The resulting structure is topologically stable as it cannot be separated without breaking the rings. In other words, one cannot untie the knot within the superfluid unless one destroys the state of the quantum matter.

To make this discovery we exposed a Rubidium condensate to rapid changes of a specifically tailored magnetic field, tying the knot in less than a thousandth of a second. After we learned how to tie the first quantum knot, we have become rather good at it. Thus far, we have tied several hundred such knots, says Professor David Hall, Amherst College.
The scientists tied the knot by squeezing the structure into the condensate from its outskirts. This required them to initialize the quantum field to point in a particular direction, after which they suddenly changed the applied magnetic field to bring an isolated null point, at which the magnetic field vanishes, into the center of the cloud. Then they just waited for less than a millisecond for the magnetic field to do its trick and tie the knot.

For decades, physicists have been theoretically predicting that it should be possible to have knots in quantum fields, but nobody else has been able to make one. Now that we have seen these exotic beasts, we are really excited to study their peculiar properties. Importantly, our discovery connects to a diverse set of research fields including cosmology, fusion power, and quantum computers, says research group leader Mikko Möttönen, Aalto University.
Knots have been used and appreciated by human civilizations for thousands of years. For example, they have enabled great seafaring expeditions and inspired intricate designs and patterns. The ancient Inca civilization used a system of knots known as quipu to store information. In modern times, knots have been thought to play important roles in the quantum-mechanical foundations of nature, although they have thus far remained unseen in quantum dynamics.

In everyday life, knots are typically tied on ropes or strings with two ends. However, these kinds of knots are not what mathematicians call topologically stable since they can be untied without cutting the rope. In stable knots, the ends of the ropes are glued together. Such knots can be relocated within the rope but cannot be untied without scissors.

Mathematically speaking, the created quantum knot realizes a mapping referred to as Hopf fibration that was discovered by Heinz Hopf in 1931. The Hopf fibration is still widely studied in physics and mathematics. Now it has been experimentally demonstrated for the first time in a quantum field.

This is the beginning of the story of quantum knots. It would be great to see even more sophisticated quantum knots to appear such as those with knotted cores. Also it would be important to create these knots in conditions where the state of the quantum matter would be inherently stable. Such system would allow for detailed studies of the stability of the knot itself, says Mikko Möttönen.

Funding

This material is based upon work supported by the National Science Foundation under Grant No. PHY-1205822, the Academy of Finland (grant nos. 251748, 284621, 135794, and 272806), Finnish Doctoral Programme in Computational Sciences, and the Magnus Ehrnrooth Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

####

For more information, please click here

Contacts:
Mikko Möttönen
Docent, Professor

358-50-594-0950 (Time zone: GMT +2)
Aalto University and University of Jyväskylä

http://physics.aalto.fi/en/groups/qcd/

Mikko Möttönen is the leader of the theoretical and computational part of the research. Theoretical insight and computational modelling was very important for the success of the creation of the knots. The modelling was carried out using the facilities at CSC -- IT Center for Science Ltd and at Aalto University (Aalto Science-IT project).

David S. Hall, Professor
Amherst College

1-413-542-2072 (Time zone: GMT -5)

http://www3.amherst.edu/~halllab/

David S. Hall is the leader of the experimental part of the research. The quantum knots were created in the Physics Laboratories at Amherst College, United States of America.

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research article (This article should be credited as the source of stories covered.)

The submitted version of the manuscript is openly available at:

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Videos/Movies

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Fast-spinning spheres show nanoscale systems' secrets: Rice University lab demonstrates energetic properties of colloids in spinning magnetic field February 7th, 2018

New research yields super-strong aluminum alloy January 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Quantum Physics

New silicon chip for helping build quantum computers and securing our information February 8th, 2018

Quantum cocktail provides insights on memory control: Experiments based on atoms in a shaken artificial crystal offer insight that might help in the development of future data-storage devices January 26th, 2018

Physics

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Research partnerships

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

Nanowire LED Innovator Aledia Announces €30 ($36M) Million Series-C Financing: Intel Capital Joins Existing Investors to Commercialize Certain Nanowire-LED Technologies for Mobile Displays January 29th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project