Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Two-stage power management system boosts energy-harvesting efficiency

With this triboelectric nanogenerator and two-stage power management and storage system, finger tapping motion generates enough power to operate this scientific calculator.

Credit: Zhong Lin Wang Laboratory
With this triboelectric nanogenerator and two-stage power management and storage system, finger tapping motion generates enough power to operate this scientific calculator.

Credit: Zhong Lin Wang Laboratory

Abstract:
A two-stage power management and storage system could dramatically improve the efficiency of triboelectric generators that harvest energy from irregular human motion such as walking, running or finger tapping.

Two-stage power management system boosts energy-harvesting efficiency

Atlanta, GA | Posted on January 12th, 2016

The system uses a small capacitor to capture alternating current generated by the biomechanical activity. When the first capacitor fills, a power management circuit then feeds the electricity into a battery or larger capacitor. This second storage device supplies DC current at voltages appropriate for powering wearable and mobile devices such as watches, heart monitors, calculators, thermometers - and even wireless remote entry devices for vehicles.

By matching the impedance of the storage device to that of the triboelectric generators, the new system can boost energy efficiency from just one percent to as much as 60 percent. The research was reported December 11 in the journal Nature Communications.

"With a high-output triboelectric generator and this power management circuit, we can power a range of applications from human motion," said Simiao Niu, a graduate research assistant in the School of Materials Science and Engineering at the Georgia Institute of Technology. "The first stage of our system is matched to the triboelectric nanogenerator, and the second stage is matched to the application that it will be powering."

Triboelectric nanogenerators use a combination of the triboelectric effect and electrostatic induction to generate small amounts of electrical power from mechanical motions such as rotation, sliding or vibration. The triboelectric effect takes advantage of the fact that certain materials become electrically charged after they come into moving contact with a surface made from a different material. However, the output is alternating current, which can power applications such as LED lighting - but is not ideal for mobile devices.

Ordinary alternating current can be converted to direct current by using a transformer - but such a device requires consistency in the number of cycles per second. Because biomechanical energy sources such as walking or finger tapping produce fluctuating amplitude and variable frequencies, a standard transformer can't be used. In addition, the output from a triboelectric generator tends to have high voltage and low current - while applications for it require just the opposite: low voltage and higher current.

To address the problem, Niu and collaborators under the supervision of Professor Zhong Lin Wang at Georgia Tech developed their power management system, which converts the fluctuating power amplitudes and variable frequencies to a continuous direct current.

The power management system can work with any triboelectric generator that produces a minimum of 100 microwatts. The system requires some power to operate, but compensates by increasing the overall output as much as 330 times to reach milliwatt levels.

"It doesn't matter what kind of mechanical motion or what frequency of mechanical motion you have as long as the energy input is high," said Niu. "This is a critical step in the commercialization of triboelectric nanogenerators because it opens up a range of new applications."

With finger tapping as the only energy source, the power unit provides continuous direct current of 1.044 milliwatts. The unit can work continuously with the motion, allowing devices to be operated even as the device charges the battery or capacitor.

Beyond portable electronics, Niu believes the system could be useful in powering networks of sensors, allowing long-term operation without the need for replacing batteries.

"In a sensor network, you would have so many devices that you could not replace all of the batteries," he said. "This technology would allow you to power the sensors by harvesting energy from the environment and then directly providing energy for each component of the network."

With the energy management circuitry demonstrated in this proof-of-concept, the next step will be to miniaturize the circuitry to fit into an overall system, said Zhong Ling Wang, a Regents professor in the Georgia Tech School of Materials Science and Engineering who led development of the original triboelectric nanogenerators.

"This new device provides a bridge between the triboelectric nanogenerator and many different types of applications," he said. "This work will allow us to build a package that can power wearable and mobile devices from the motion of humans. With constant output from a battery or large capacitor, you can drive just about any device that you want."

The power management system could also be applied to piezoelectric and pyroelectric generators, which also produce alternating current.

In 2012, Wang and his research team announced triboelectric nanogenerators that produce small amounts of electricity from motion in the world around us - by capturing the electrical charge produced when two different kinds of plastic materials rub against one another. Based on flexible polymer materials, the triboelectric generators provide alternating current (AC) from activities such as walking.

Variations in generator structures allow a variety of applications depending on the source of mechanical energy. Wang's team has reported four major groups of generators including those that operate by (1) vertical contact-separation mode, (2) lateral sliding mode, (3) single-electron mode, and (4) freestanding triboelectric-layer mode. There are also hybrid combinations of these major structural modes.

####

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

CITATION: Simiao Niu, Xiaofeng Wang, Fang Yi, Yu Sheng Zhou and Zhong Lin Wang, "A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics," (Nature Communications, 2015):

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project