Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chalmers researchers extend the lifetime of atoms using a mirror: In an experiment researchers at Chalmers University of Technology have got an artificial atom to survive ten times longer than normal by positioning the atom in front of a mirror. The findings were recently publish

The lifetime of an atom can be extended up to ten times by placing it in front of a short circuit that acts as a mirror. The artificial atom consists of a superconducting circuit on a silicon chip. The interaction between the atom and its mirror image modifies the vacuum fluctuations seen by the atom and thus its lifetime.
CREDIT: Moa Carlsson and Lisa Kinnerud, Krantz NanoArt
The lifetime of an atom can be extended up to ten times by placing it in front of a short circuit that acts as a mirror. The artificial atom consists of a superconducting circuit on a silicon chip. The interaction between the atom and its mirror image modifies the vacuum fluctuations seen by the atom and thus its lifetime.

CREDIT: Moa Carlsson and Lisa Kinnerud, Krantz NanoArt

Abstract:
Researchers at Chalmers University of Technology have succeeded in an experiment where they get an artificial atom to survive ten times longer than normal by positioning the atom in front of a mirror. The findings were recently published in the journal Nature Physics.

Chalmers researchers extend the lifetime of atoms using a mirror: In an experiment researchers at Chalmers University of Technology have got an artificial atom to survive ten times longer than normal by positioning the atom in front of a mirror. The findings were recently publish

Gothenburg, Sweden | Posted on October 14th, 2015

If one adds energy to an atom - one says that the atom is excited -- it normally takes some time before the atom loses energy and returns to its original state. This time is called the lifetime of the atom. Researchers at Chalmers University of Technology have placed an artificial atom at a specific distance in front of a short circuit that acts as a mirror. By changing the distance to the mirror, they can get the atom to live longer, up to ten times as long as if the mirror had not been there.

The artificial atom is actually a superconducting electrical circuit that the researchers make behave as an atom. Just like a natural atom, you can charge it with energy; excite the atom; which it then emits in the form of light particles. In this case, the light has a much lower frequency than ordinary light and in reality is microwaves.

"We have demonstrated how we can control the lifetime of an atom in a very simple way," says Per Delsing, Professor of Physics and leader of the research team. "We can vary the lifetime of the atom by changing the distance between the atom and the mirror. If we place the atom at a certain distance from the mirror the atom's lifetime is extended by such a length that we are not even able to observe the atom. Consequently, we can hide the atom in front of a mirror," he continues.

The experiment is a collaboration between experimental and theoretical physicists at Chalmers, the latter have developed the theory for how the atom's lifetime varies depending on the distance to the mirror.

"The reason why the atom "dies", that is it returns to its original ground state, is that it sees the very small variations in the electromagnetic field which must exist due to quantum theory, known as vacuum fluctuations," says Göran Johansson, Professor of Theoretical and Applied Quantum Physics and leader of the theory group.

When the atom is placed in front of the mirror it interacts with its mirror image, which changes the amount of vacuum fluctuations to which the atom is exposed. The system that the Chalmers researchers succeeded in building is particularly well suited for measuring the vacuum fluctuations, which otherwise is a very difficult thing to measure.

###

Facts about the research

The sample that the researchers used is fabricated on a silicon chip and contains two key elements. The first is a superconducting circuit forming the artificial atom. The second part is a short circuit that acts as a mirror. By sending a very weak signal to the atom, researchers can measure its lifetime. At the same time, they can vary the effective distance to the mirror. This is done by changing the atomic resonance frequency, while the actual distance remains constant. By doing this you can control the distance measured in the number of wavelengths of light/microwaves. A frequency of 4.8 GHz was used in the experiment, which is close to the radio waves used in wireless networks. The experiments were performed at very low temperatures, close to absolute zero (30 mK) to ensure the atom is in its ground state at the start of the experiment.

####

For more information, please click here

Contacts:
Christian Borg

46-317-723-395

Per Delsing
Professor of Physics
Department of Microtechnology and Nanoscience - MC2
Chalmers University of Technology
46 70-308 83 17


Göran Johansson
Professor of Theoretical and Applied Quantum Physics
Department of Microtechnology and Nanoscience - MC2
Chalmers University of Technology
+46 73-060 73 38

Copyright © Chalmers University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project