Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoscale photodetector shows promise to improve the capacity of photonic circuits: Researchers at the University of Rochester have fabricated a device in which light can induce a current using a silver nanowire -- an important step toward harnessing light to speed up the next ge

This image shows light traveling along a silver nanowire as plasmons and re-emitted via molybdenum disulfide.
CREDIT: M. Osadciw, University of Rochester, New York
This image shows light traveling along a silver nanowire as plasmons and re-emitted via molybdenum disulfide.

CREDIT: M. Osadciw, University of Rochester, New York

Abstract:
Photonic circuits, which use light to transmit signals, are markedly faster than electronic circuits. Unfortunately, they're also bigger. It's difficult to localize visible light below its diffraction limit, about 200-300 nanometers, and as components in electronic semiconductors have shrunk to the nanometer scale, the photonic circuit size limitation has given electronic circuits a significant advantage, despite the speed discrepancy.

Nanoscale photodetector shows promise to improve the capacity of photonic circuits: Researchers at the University of Rochester have fabricated a device in which light can induce a current using a silver nanowire -- an important step toward harnessing light to speed up the next ge

Washington, DC | Posted on October 6th, 2015

Now researchers at the University of Rochester have demonstrated a key achievement in shrinking photonic devices below the diffraction limit -- a necessary step on the road to making photonic circuits competitive with today's technology. The scientists developed a nanoscale photodetector that uses the common material molybdenum disulfide to detect optical plasmons -- travelling oscillations of electrons below the diffraction limit -- and successfully demonstrated that light can drive a current using a silver nanowire.

"Our devices are a step towards miniaturization below the diffraction limit," said Kenneth Goodfellow, a graduate student in the laboratory of the Quantum Optoelectronics and Optical Metrology Group, The Institute of Optics, University of Rochester, New York. "It is a step towards using light to drive, or, at least complement electronic circuitry for faster information transfer."

The team will present their work at the Frontiers in Optics, The Optical Society's annual meeting and conference in San Jose, California, USA, on 22 October 2015.

The device expands on previous work demonstrating that light could be transmitted along a silver nanowire as a plasmon and re-emitted at the other end, which was covered with atomically-thin flakes of molybdenum disulfide (MoS2). When re-emitted, the light corresponded to the band gap of MoS2, rather than solely to the laser's wavelength, demonstrating that the plasmons effectively nudged the electrons in MoS2 into a different energy state.

"The natural next idea would be to see if this type of device would be able to be used as a photodetector," Goodfellow said.

To do this, the group transferred a silver nanowire coated at one end with MoS2 onto a silicon substrate and deposited metal contacts onto that same end with electron beam lithography. They then connected the device to equipment to control its bias, or fixed, voltage and to measure the current running through it.

When the uncovered end of the wire was exposed to a laser, the energy was converted into plasmons, a form of electromagnetic wave that travels through oscillations in electron density. This energy electronically excited an electron once it reached the molybdenum disulfide-covered end, effectively generating a current.

By scanning the wire bit-by-bit with a laser -- a process known as raster scanning -- the researchers were able to measure current at each point along the wire, finding that it was sensitive to the polarization of the incoming light and was at its strongest when the light was polarized parallel to the wire. They also found that the device was sensitive to the laser's excitation wavelength, and performance was limited at shorter wavelengths due to ineffective plasmon propagation and at longer wavelengths due to the band gap of molybdenum disulfide.

"Full photonic circuits are some time in the future, but this work helps to feed the current effort," Goodfellow said.

Future work for the group includes reducing potential contamination in device assembly by transitioning to a complete dry transfer of wires and MoS2 onto prefabricated electrodes, as well as gaining better control of the MoS2 doping process to add additional charge carriers and improve the device's efficiency.

###

About the Presentation

The presentation, "Detection of Optical Plasmons Using an Atomically-Thin Semiconductor," by Kenneth Goodfellow, will take place from 15:30 - 17:00, Thursday, 22 October 2015, in The Fairmont Hotel, San Jose, California, USA.

Media Registration: A media room for credentialed press and analysts will be located on-site in The Fairmont Hotel, 18-22 October 2015. Media interested in attending the event should register on the FiO website media center: Media Center.

####

About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. OSA is a founding partner of the National Photonics Initiative and the 2015 International Year of Light. For more information, visit: www.osa.org.

About FiO/LS

Frontiers in Optics (FiO) 2015 is The Optical Society's (OSA) 99th Annual Meeting and is being held with Laser Science, the 31th annual meeting of the American Physical Society (APS) Division of Laser Science (DLS). The two meetings unite the OSA and APS communities for five days of quality, cutting-edge presentations, in-demand invited speakers and a variety of special events spanning a broad range of topics in optics and photonics--the science of light--across the disciplines of physics, biology and chemistry. The exhibit floor will feature leading optics companies, technology products and programs. More information at: www.FrontiersinOptics.org.

For more information, please click here

Contacts:
Rebecca Andersen

202-416-1443

Research Contact:

Kenneth Goodfellow
University of Rochester
Rochester, NY

Copyright © The Optical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Optical computing/Photonic computing

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project