Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Surfing over simulated ripples in graphene: Scientists from India elucidate the theory governing the characteristics of curved or rippled graphene using a simulation model based on an optical lattice

Abstract:
The single-carbon-atom-thick material, graphene, featuring ripples is not easy to understand. Instead of creating such ripples physically, physicists investigating this kind of unusually shaped material rely on a quantum simulator. It is made up of an artificial lattice of light - called ultra-cold optical lattice - akin to eggs held in the cavities of an egg tray. This approach allowed a team of theoretical physicists from India to shed some light - literally and figuratively - on the properties of rippled graphene. These findings have just been published in EPJ B by Tridev Mishra and colleagues from the Birla Institute of Technology and Science, in Pilani, India. Ultimately, this work could find applications in novel graphene-based sensors.

Surfing over simulated ripples in graphene: Scientists from India elucidate the theory governing the characteristics of curved or rippled graphene using a simulation model based on an optical lattice

Heidelberg, Germany | Posted on September 19th, 2015

Optical lattices are perfect simulators. They are like mini-laboratories suitable for studying the response of a material after it has been subjected to controllable parameters inducing a deformation. What makes this particular study novel is that the team has managed to control the creation of a curved space or ripples in graphene by relying on an optical lattice simulator. The authors have thus developed a theory describing how a sequence of pulses, whose amplitude can be modulated, changes an optical lattice - specifically, the background geometry of its constituent particles. Previous modelling attempts only described static curved graphene.

Mishra and colleagues have established equations of the energy for particles caught in an optical lattice. This, in turn, simulates the energy of the electrons in a graphene sheet with a curvature. They then use a map to translate the physical characteristics of the approximation used in the curved space picture of graphene to the more realistic optical lattice picture. They thus obtain an understanding of the dynamics of the evolution from the 'egg in a tray' structure of the optical lattice in terms of the properties of 'an omelette style' continuum of energy found in graphene.

####

For more information, please click here

Contacts:
Sabine Lehr

49-622-148-78336

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference:

Related News Press

News and information

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Graphene/ Graphite

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Sensors

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

The most sensitive and fastest graphene microwave bolometer September 30th, 2020

An improved wearable, stretchable gas sensor using nanocomposites August 28th, 2020

Nano-diamond self-charging batteries could disrupt energy as we know it August 25th, 2020

Discoveries

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Announcements

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GLOBALFOUNDRIES Accelerating Innovation in IoT and Wearables with Adaptive Body Bias Feature on 22FDX Platform October 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Making disorder for an ideal battery: Manufacturing safer, more powerful batteries that use geopolitically stable resources requires solid electrolytes and replacing lithium with sodium. A chemical solution is now being offered to battery developers. October 16th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Quantum nanoscience

The most sensitive and fastest graphene microwave bolometer September 30th, 2020

The ICN2 co-leads a roadmap on quantum materials September 29th, 2020

Spin clean-up method brings practical quantum computers closer to reality: Osaka City University develops a quantum algorithm that removes pesky spin contaminants from chemical calculations on quantum computers September 25th, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project