Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Shaping the hilly landscapes of a semi-conductor nanoworld

Abstract:
A new study reveals how hexagonal-patterned, self-organised hill structures emerge in 2D at the nanoscale due to redeposition following semi-conductor bombardment with low-energy ions.

Shaping the hilly landscapes of a semi-conductor nanoworld

Heidelberg, Germany | Posted on August 1st, 2015

Nanoscale worlds sometimes resemble macroscale roller-coaster style hills, placed at the tip of a series of hexagons. Surprisingly, these nanohills stem from the self-organisation of particles - the very particles that have been eroded and subsequently redeposited following the bombardment of semi-conductors with ion beams. Now, a new theoretical study constitutes the first exhaustive investigation of the redeposition effect on the evolution of the roughening and smoothing of two-dimensional surfaces bombarded by multiple ions. The results demonstrate that the redeposition can indeed act as stabilising factor during the creation of the hexagonally arranged dot patterns observed in experiments. These findings by Christian Diddens from the Eindhoven University of Technology, in the Netherlands, and Stefan Linz, from Munster University, Germany, have been published in a study published in EPJ B.

To calculate multiple simulations of redeposition within reasonable computation times, the authors have developed an elaborate new highly efficient algorithm that combines established erosion models with a redeposition model. The latter made it possible to approximate the entire microscopic redeposition dynamics as a function of the relative height and the local slope of a coarse-grained surface. This approach is also supplemented by a new numerical algorithm to calculate precisely how the matter lifted by the ion beams is subsequently redeposited.

This led to the realisation that eroded particles predominantly redeposit in the vicinity of the valleys, whereas almost no particles reattach at the hilltops. Overall, they found that the redeposition mechanism can contribute towards the formation of stable hexagonal patterns. They also confirmed that the aspect ratio of the well-ordered structures resulting from numerical simulation is comparable with experimental findings. This means that the reattachment of eroded particles can play an important role in the observed nanostructures formations. At the same, they comprehensively investigated the distribution of redepositing particles on patterned surfaces.

Full bibliographic information
C. Diddens and S. J. Linz (2015), Continuum modeling of particle redeposition during ion-beam erosion, Eur. Phys. J. B 88:190, DOI: 10.1140/epjb/e2015-60468-7

####

About Springer Science+Business Media
Springer Science+Business Media (www.springer.com) is a leading global scientific publisher, providing researchers in academia, scientific institutions and corporate R&D departments with quality content via innovative information products and services. Springer is also a trusted local-language publisher in Europe – especially in Germany and the Netherlands – primarily for physicians and professionals working in the automotive, transport and healthcare sectors. Roughly 2,000 journals and more than 7,000 new books are published by Springer each year, and the group is home to the world’s largest STM eBook collection, as well as the most comprehensive portfolio of open access journals. Springer employs nearly 6,200 individuals across the globe and in 2011 generated sales of approximately EUR 875 million.

For more information, please click here

Contacts:
Sabine Lehr
Springer
Physics Editorial Department
tel +49-6221-487-8336


Joan Robinson
+49-6221-487-8130

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Developing nanoprobes to detect neurotransmitters in the brain: Researchers synthesize fluorescent molecularly imprinted polymer nanoparticles to sense small neurotransmitter molecules and understand how they govern brain activity March 3rd, 2023

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Lipid nanoparticles highly effective in gene therapy March 3rd, 2023

Discoveries

Scientists develop self-tunable electro-mechano responsive elastomers March 3rd, 2023

Recent progress of carbon-based non-noble metal single-atom catalysts for energy conversion electrocatalysis March 3rd, 2023

Destroying the superconductivity in a kagome metal: Electronic control of quantum transitions in candidate material for future low-energy electronics March 3rd, 2023

Stanford researchers develop a new way to identify bacteria in fluids: An innovative adaptation of the technology in an old inkjet printer plus AI-assisted imaging leads to a faster, cheaper way to spot bacteria in blood, wastewater, and more March 3rd, 2023

Materials/Metamaterials

Scientists develop self-tunable electro-mechano responsive elastomers March 3rd, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

Announcements

Recent progress of carbon-based non-noble metal single-atom catalysts for energy conversion electrocatalysis March 3rd, 2023

Destroying the superconductivity in a kagome metal: Electronic control of quantum transitions in candidate material for future low-energy electronics March 3rd, 2023

Stanford researchers develop a new way to identify bacteria in fluids: An innovative adaptation of the technology in an old inkjet printer plus AI-assisted imaging leads to a faster, cheaper way to spot bacteria in blood, wastewater, and more March 3rd, 2023

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Recent progress of carbon-based non-noble metal single-atom catalysts for energy conversion electrocatalysis March 3rd, 2023

Destroying the superconductivity in a kagome metal: Electronic control of quantum transitions in candidate material for future low-energy electronics March 3rd, 2023

Stanford researchers develop a new way to identify bacteria in fluids: An innovative adaptation of the technology in an old inkjet printer plus AI-assisted imaging leads to a faster, cheaper way to spot bacteria in blood, wastewater, and more March 3rd, 2023

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project