Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New technique enables magnetic patterns to be mapped in 3-D

Mapping of the captured magnetization domains (right, red-blue patterns) in a sample 20 nanometers thick that had been wound in two layers into a tube. The tube has a diameter of 5 microns and a height of 50 microns.
CREDIT: F. Kronast /HZB
Mapping of the captured magnetization domains (right, red-blue patterns) in a sample 20 nanometers thick that had been wound in two layers into a tube. The tube has a diameter of 5 microns and a height of 50 microns.

CREDIT: F. Kronast /HZB

Abstract:
An international collaboration has succeeded in using synchrotron light to detect and record the complex 3-D magnetization in wound magnetic layers. This technique could be important in the development of devices that are highly sensitive to magnetic fields, such as in medical diagnostics for example. Their results are published now in Nature Communications.

New technique enables magnetic patterns to be mapped in 3-D

Berlin, Germany | Posted on July 7th, 2015

3D structures in materials and biological samples can be investigated today using X-ray tomography. This is done by recording images layer-by-layer and assembling them on a computer into a three-dimensional mapping. But so far there has been no comparable technique for imaging 3D magnetic structures on nm length scales. Now teams from HZB and the Institut für Festkörperphysik / Technische Universität Dresden in collaboration with research partners from institutions in California (1) have developed a technique with which this is possible.

Mapping of rolled-up magnetic samples

They studied the magnetisation in rolled-up tubular magnetic nanomembranes (nickel or cobalt-palladium) about two layers thick. To obtain a 3D mapping of the magnetisation in the tubes, the samples were illuminated with circularly polarized X-rays. Using the X-ray microscope at the Advanced Light Source and the X-ray Photoemission Electron Microscopy (XPEEM) beamline at BESSY II, the samples were slightly rotated for each new image so that a series of 2D images was created. "The polarised light penetrated the magnetic layers from different angles. Using XPEEM, we were not only able to measure the magnetic features at the surface, but also obtained additional information from the "shadow", explains Florian Kronast, who is responsible for the XPEEM beamline at HZB.

3D reconstruction of magnetic patterns

In the end, the physicists were successful in reconstructing the magnetic features on the computer in three dimensions.

"These samples displayed structures not smaller than 75 nanometres. But with this method we should be able to see even smaller structures and obtain a resolution of 20 nanometres", explains Florian Kronast. However, so far only electron holography could be considered for mapping magnetic domains of three-dimensional objects at the nanometre scale. This required very complicated sample preparation and the magnetisation could only be indirectly determined through the resulting distribution of the magnetic field. "Our process enables you to map the magnetisation in directly in 3D. Knowledge of the magnetisation is prerequisite for improving the sensitivity of magnetic field detectors."

Sensors for weak magnetic fields

The new method could be of interest to anyone involved with extremely small magnetic features within small volumes, such as those developing more sensitive devices for medical imaging, for example. Procedures like magnetoencephalography depend on externally detecting very weak magnetic fields created by the electrical activity of individual nerve cells - using appropriately sensitive detectors.

###

To the publication: Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies. Robert Streubel, Florian Kronast,Peter Fischer, Dula Parkinson, Oliver G. Schmidt & Denys Makarov. Nature Communications 6,7612, doi:10.1038/ncomms8612

(1): Advanced Light Source/Lawrence Berkeley National Laboratory, UC Santa Cruz

####

For more information, please click here

Contacts:
Antonia Roetger

49-308-062-43733

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Laboratories

Supersonic waves may help electronics beat the heat May 18th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Scientists Pinpoint Energy Flowing Through Vibrations in Superconducting Crystals: Interactions between electrons and the atomic structure of high-temperature superconductors impacted by elusive and powerful vibrations May 4th, 2018

Imaging

Elastic microspheres expand understanding of embryonic development and cancer cells May 15th, 2018

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Nanomedicine

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Elastic microspheres expand understanding of embryonic development and cancer cells May 15th, 2018

Nanomedicine -- Targeting cancer cells with sugars May 14th, 2018

NanoBio Announces Corporate Name Change to BlueWillow Biologics and Closes $10M Series A Financing: Move Reflects Focus on Advancing Several Intranasal Vaccines to Human Studies May 9th, 2018

Discoveries

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Announcements

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Tools

A micro-thermometer to record tiny temperature changes May 15th, 2018

Elastic microspheres expand understanding of embryonic development and cancer cells May 15th, 2018

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

Leti and Cellmic Join Forces to Speed Market Adoption of Lens-Free Imaging and Sensing Techniques May 3rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project