Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A protective shield for sensitive catalysts: Hydrogels block harmful oxygen

With a novel hydrogel, sensitive catalysts can be protected from oxygen molecules (red) which could irreversibly damage the catalysts. The hydrogel converts oxygen into water (red-white).

© Felipe Conzuelo
With a novel hydrogel, sensitive catalysts can be protected from oxygen molecules (red) which could irreversibly damage the catalysts. The hydrogel converts oxygen into water (red-white).

© Felipe Conzuelo

Abstract:
An international research team has found a way of protecting sensitive catalysts from oxygen-caused damage. In the future, this could facilitate the creation of hydrogen fuel cells with molecular catalysts or with biomolecules such as the hydrogenase enzyme. To date, this could only be accomplished using the rare and expensive precious metal platinum. Together with their French colleagues, researchers from Bochum and Mülheim describe the way in which a hydrogel can serve as a "protective shield" for biomolecules by two articles written in the journals Angewandte Chemie and the Journal of the American Chemical Society.

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen

Bochum, Germany | Posted on June 15th, 2015

Requirements on catalysts are difficult to reconcile

In order to be suitable for industrial applications, catalysts have to be efficient, stable and affordable; in addition, they have to be tailor-cut for one specific chemical reaction. "Uniting all of these requirements in one molecule is a considerable challenge," says Dr Nicolas Plumeré from the Chemistry Department at the Ruhr-Universität Bochum. However, a novel hydrogel in which catalysts are embedded could greatly simplify the development of fuel cell catalysts in the future. To explore this possibility, the researchers from Bochum began a collaborative project with colleagues from the Max Planck Institute for Chemical Energy Conversion in Mülheim and from Aix Marseille University and the Centre National de la Recherche Scientifique (CNRS) in France.

Hydrogel acting as solvent and as protective environment

For their experiments, the German team utilised the hydrogenase enzyme from the green alga Chlamydomonas rheinhardtii; it splits hydrogen into protons and electrons. Typically, even trace amounts of oxygen cause irreversible damage to this biomolecule. However, the researchers incorporated it in a hydrogel which assumes two functions: it acts as a solvent, ensuring that all reaction partners reach the enzyme quickly and easily. At the same time, it provides a protective environment in which the oxygen cannot penetrate through to the enzyme, even if it is present at relatively high concentrations. The trick: the hydrogenase activity leads to the creation of electrons; they wander through the hydrogel and are transmitted to the oxygen, thus converting it into a harmless form, namely water.

Catalyst design could become considerably easier in the future

Using simulations and experiments, the German-French team demonstrated another important property of hydrogels. The activity of many catalysts decreases over time due to exposure to deactivating molecules. Some can be rendered functional again through special reactivation processes. Notably, however, the hydrogel protects even those catalysts for which a reactivation process does not exist. "In future, we will thus no longer have to pay attention to the robustness or suitable reactivation processes when developing catalysts for technical applications," explains Olaf Rüdiger, Chemist at the Max Planck Institute for Chemical Energy Conversion. "We can focus solely on maximising the catalyst's activity. This will simplify the development process to a considerable degree and open up new possibilities for the manufacture of fuel cells."

###

Funding

The German Research Foundation funded the project as part of the RESOLV Cluster of Excellence (EXC 1069). The French subproject has been carried out thanks to the support of the A*MIDEX project "MicrobioE" (n° ANR-11-IDEX-0001-02) funded by the "Investissements d'Avenir" French Government programme.

Bibliographic record

A. Alsheikh Oughli, F. Conzuelo, M. Winkler, T. Happe, W. Lubitz, W. Schuhmann, O. Rüdiger, N. Plumeré (2015): Protection from oxidative damage of the O2 sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii using a redox hydrogel, Angewandte Chemie International Edition, DOI: 10.1002/anie.201502776R1

V. Fourmond, S. Stapf, H. Li, D. Buesen, J. Birrell, R. Olaf; W. Lubitz, W. Schuhmann, N. Plumeré, C. Léger (2015): The mechanism of protection of catalysts supported in redox hydrogel films, Journal of the American Chemical Society, DOI: 10.1021/jacs.5b01194

####

For more information, please click here

Contacts:
Dr Nicolas Plumeré
junior research team
Molecular Nanostructures at the Centre for Electrochemical Sciences (CES)
Faculty of Chemistry and Biochemistry
Ruhr-Universität
44780 Bochum, Germany
phone: +49/234/32-29434


Dr Olaf Rüdiger
head of research group
Protein-Electrochemistry
Max Planck Institute for Chemical Energy Conversion
Mülheim an der Ruhr, Germany
phone: +49/208/306 3526

Copyright © Ruhr University Bochum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Hydrogels

Shrinking hydrogels enlarge nanofabrication options: Researchers from Pittsburgh and Hong Kong print intricate, 2D and 3D patterns December 29th, 2022

The deformation of the hydrogel is used to measure the negative pressure of water April 22nd, 2022

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project