Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Healthcare Nanotechnology (Nanomedicine) Market Size To 2020

Abstract:
Grand View Research.com has announced the addition of "Healthcare Nanotechnology Market Analysis And Segment Forecasts To 2022" Market Research report to their Database.

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020

San Francisco, CA | Posted on June 5th, 2015

The global market for healthcare nanotechnology is expected to reach USD 196.02 billion by 2020 growing at a CAGR of 12.1%, according to a new study by Grand View Research, Inc. Increasing susceptibility of patients towards chronic diseases such as cardiovascular, neurological, oncology and respiratory diseases coupled with increasing R&D spending opening new application avenues is expected to drive market growth over the next six years. Other drivers of this market include increasing government and private sector R&D aid and new players entering the market to bridge the gap between supply and demand.

Clinical oncology nanotechnology applications dominated the overall market in 2013, accounting for 35% of total market revenue. Higher efficacy of nanomaterials and the ability of engineered nanoparticles to cross through the blood brain barrier provides platform for groundbreaking innovations through R&D in the field of cancer therapy and serves this market as a high impact rendering driver.

To request a sample copy or view summary of this report:
www.grandviewresearch.com/industry-analysis/healthcare-nanotechology

Further key findings from the study suggest:

North America was the largest regional market in 2013, accounting for over 38% of global revenue on account of the extensive investments in research and development of innovative cancer therapies.
Asia Pacific owing to its improving healthcare infrastructure and healthcare R&D spending is expected to grow at the highest CAGR of over 14.0% from 2014 to 2020. Moreover, emerging markets such as China and India hold a large amount of untapped opportunities and are therefore expected to fuel future market growth.

Cardiovascular applications are expected to be the fastest growing segment for this market, owing to the growing global prevalence of cardiovascular diseases.

Browse all Market Research Reports @ www.grandviewresearch.com

####

For more information, please click here

Contacts:
Devesh Billore
Phone: 14153490058
Fax: 4153490058

Copyright © Grand View Research, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Cancer

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Nanomedicine

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Study reveals new mode of triggering immune responses July 15th, 2022

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project