Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings

A team led by Ohio State's Wolfgang Windl, Ph.D., used OSC's Oakley Cluster to calculate acoustic phonon movement within an indium-antimonide semiconductor under a magnetic field. Their findings show that phonon amplitude-dependent magnetic moments are induced on the atoms, which change how they vibrate and transport heat.
CREDIT: OSU
A team led by Ohio State's Wolfgang Windl, Ph.D., used OSC's Oakley Cluster to calculate acoustic phonon movement within an indium-antimonide semiconductor under a magnetic field. Their findings show that phonon amplitude-dependent magnetic moments are induced on the atoms, which change how they vibrate and transport heat.

CREDIT: OSU

Abstract:
Phonons--the elemental particles that transmit both heat and sound--have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by a researcher group from The Ohio State University.

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings

Columbus, OH | Posted on May 29th, 2015

In a recent issue of the journal Nature Materials, the researchers describe how a magnetic field, roughly the size of a medical MRI, reduced the amount of heat flowing through a semiconductor by 12 percent. Simulations performed at OSC then identified the reason for it--the magnetic field induces a diamagnetic response in vibrating atoms known as phonons, which changes how they transport heat.

"This adds a new dimension to our understanding of acoustic waves," said Joseph Heremans, Ph.D., Ohio Eminent Scholar in Nanotechnology and a professor of mechanical engineering at Ohio State whose group performed the experiments. "We've shown that we can steer heat magnetically. With a strong enough magnetic field, we should be able to steer sound waves, too."

People might be surprised enough to learn that heat and sound have anything to do with each other, much less that either can be controlled by magnets, Heremans acknowledged. But both are expressions of the same form of energy, quantum mechanically speaking. So any force that controls one should control the other.

The nature of the effect of the magnetic field initially was not understood and subsequently was investigated through computer simulations performed on OSC's Oakley Cluster by Oscar Restrepo, Ph.D., a research associate, Nikolas Antolin, a doctoral student, and Wolfgang Windl, Ph.D., a professor, all of Ohio State's Department of Materials Science and Engineering. After painstakingly examining all possible magnetic responses that a non-magnetic material can have to an external field, they found that the effect is due to a diamagnetic response, which exists in all materials. This suggests then that the general effect should be present in any solid.

The implication: in materials such as glass, stone, plastic--materials which are not conventionally magnetic--heat can be controlled magnetically, if you have a powerful enough magnet. This development may have future impacts on new energy production processes.

But, there won't be any practical applications of this discovery any time soon: seven-tesla magnets like the one used in the study don't exist outside of hospitals and laboratories, and a semiconductor made of indium antimonide had to be chilled to -450 degrees Fahrenheit (-268 degrees Celsius)--very close to absolute zero--to make the atoms in the material slow down enough for the phonons' movements to be detectible.

To simulate the experiment, Windl and his computation team employed a quantum mechanical modeling strategy known as density functional theory (DFT). The DFT strategy was used to determine how the electron distribution changed when atoms vibrated with or without magnetic field. The motion of the electrons around their atoms changed in the field, creating diamagnetic moments when phonons were present. These moments then reacted to the field and slowed the heat transport, similar to an eddy current brake in a train.

The simulations were conducted on the Oakley Cluster, an HP/Intel Xeon system with more than 8,300 processor cores to provide researchers with a peak performance of 154 Teraflops--tech-speak for 154 trillion calculations per second. Since atoms can vibrate in many different ways, a large number of simulations were necessary, consuming approximately 1.5 million CPU hours even on a machine as powerful as Oakley. OSC engineers also helped the research team use OSC's high-throughput, parallel file system to handle the immense datasets generated by the DFT model.

"OSC offered us phenomenal support; they supported our compilation and parallel threading issues, helped us troubleshoot hardware issues when they arose due to code demands, and moved us to the Lustre high-performance file system after we jammed their regular file system," said Antolin, who is the expert for high-demand computations in Windl's group.

"Dr. Windl and his team are important OSC clients, and we're always pleased to support their research projects with our hardware, software and staff support services," said David Hudak, Ph.D., OSC's director of supercomputer services. "With the addition of the Ruby Cluster this past fall and another, much more powerful system upcoming this fall, OSC will continue to offer even larger, faster and more powerful services to support this type of discovery and innovation."

Next, the group plans to test whether they can deflect sound waves sideways with magnetic fields.

###

Coauthors on the study included graduate student Hyungyu Jin and postdoctoral researcher Stephen Boona from mechanical and aerospace engineering; and Roberto Myers, Ph.D., an associate professor of materials science and engineering, physics and mechanical and aerospace engineering.

Funding for the study came from the U.S. Army Research Office, the U.S. Air Force Office of Scientific Research and the National Science Foundation (NSF), including funds from the NSF Materials Research Science and Engineering Center at Ohio State. Computing services were provided by the Ohio Supercomputer Center.

####

For more information, please click here

Contacts:
Jamie Abel

614-292-6495

Copyright © Ohio Supercomputer Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project