Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Record high sensitive Graphene Hall sensors

Abstract:
In the era of modern world, numerous types of magnetic field sensors are being used in different applications. The magnetic field sensors market has gained ample demand recently due to humongous increase in vehicle production, gaming consoles, consumer electronics industry, homeland security, healthcare, aerospace, the defense industry, etc. These magnetic field sensors are famously in demand for precise measurements of position, proximity and motion. The most popular types of magnetic field sensors are Hall Effect, magneto resistive and SQUID. According to recent market reports, the total shipment in the year 2013 for the magnetic field sensors was recorded to be 6.5 billion units. This figure is expected to reach up to 9.6 billion units by 2020. From business point of view, this market has earned $1.8 billion in 2014 and likely to reach up to $2.9 billion by year 2020. Out of these various types Hall Effect sensors are more cost effective, durable and can be handled with ease.

Record high sensitive Graphene Hall sensors

Cambridge, UK | Posted on May 21st, 2015

The most commonly used Hall Effect devices are fabricated with Silicon. The important figure of merits of Hall sensors are voltage and current - related sensitivities. These sensitivities depend on the device materials electronic properties such as charge carrier mobility and density. However, for futuristic advanced applications requires higher sensitivity Hall sensors. The other well-known materials are based on high purity III/V semiconductors like GaAs or InAs based heterostructures. Though lot of efforts has been gone in developing sensors using these materials, sensitivity values are restricted.

Now the researchers from Germany at RWTH University and AMO GmbH Aachen have fabricated ultra-high sensitive Hall Effect sensors using single layer graphene. The results are published in Applied Physics Letters. Graphene, two dimensional atomic form of carbon, is a potential candidate for highly-sensitive Hall sensors because of its very high carrier mobility at room temperature and very low carrier densities. These properties make graphene a material that can outperform all currently existing Hall sensor technologies.
Researchers have protected the graphene from ambient contaminations by encapsulating it with hexagonal boron nitride layers; another highly promising 2D insulating material. The fabricated devices show a voltage and current normalized sensitivity of up to 3 V/VT and 5700 V/AT, respectively. These values are more than one order of magnitude above the values achieved in Silicon based and a factor of two above the values achieved with the best III/V semiconductors Hall sensors in ambient conditions. In addition, these results are far better than the earlier reported graphene Hall sensors on Silicon oxide and Silicon carbide substrates.

This new sensitivity level will enable devices with higher precision, lower energy consumption with smaller dimensions. This work will show new light for using graphene in more commercial applications, as Hall sensors are integral part of many household appliances. The research work is supported by the EU Graphene Flagship project (Contract No. NECT-ICT-604391) and the ERC (GA-Nr. 280140).

Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride. Jan Dauber, Abhay A. Sagade, Martin Oellers, Kenji Watanabe, Takashi Taniguchi, Daniel Neumaier, and Christoph Stampfer. App. Phys. Lett. 106, 193501 (2015); doi: 10.1063/1.4919897.

####

For more information, please click here

Contacts:
Dr. Abhay Sagade
Dept. of Engineering,
University of Cambridge, UK.

Copyright © University of Cambridge

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Graphene/ Graphite

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

Graphene nanotubes help to prevent losses at grain elevators June 2nd, 2020

Sensors

Polymers can fine-tune attractions between suspended nanocubes: Interactions between hollow silica nanocubes suspended in a solution can be adjusted by varying the concentration of polymer molecules added to the mixture. June 19th, 2020

Single-spin electron paramagnetic resonance spectrum with kilohertz spectral resolution June 19th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Making quantum 'waves' in ultrathin materials: Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale May 15th, 2020

Discoveries

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Announcements

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project