Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials

This playground structure represents a larger-than-life nanoporous metal-organic framework to this Sandia National Laboratories research team of (clockwise from upper left) Michael Foster, Vitalie Stavila, Catalin Spataru, François Léonard, Mark Allendorf, Alec Talin and Reese Jones. The team made the first measurements of thermoelectric behavior in a MOF.
CREDIT: Dino Vournas, Sandia National Laboratories
This playground structure represents a larger-than-life nanoporous metal-organic framework to this Sandia National Laboratories research team of (clockwise from upper left) Michael Foster, Vitalie Stavila, Catalin Spataru, François Léonard, Mark Allendorf, Alec Talin and Reese Jones. The team made the first measurements of thermoelectric behavior in a MOF.

CREDIT: Dino Vournas, Sandia National Laboratories

Abstract:
Sandia National Laboratories researchers have made the first measurements of thermoelectric behavior by a nanoporous metal-organic framework (MOF), a development that could lead to an entirely new class of materials for such applications as cooling computer chips and cameras and energy harvesting.

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials

Livermore, CA | Posted on May 20th, 2015

"These results introduce MOFs as a new class of thermoelectric materials that can be tailored and optimized," said Sandia physicist Francois Leonard. "This discovery brings us a step closer to realizing the potential of MOFs in practical applications."

The results were published in "Thin Film Thermoelectric Metal-Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity," which appeared April 28 online in Advanced Materials. This work builds on previous research in which the Sandia team realized electrical conductivity in MOFs by infiltrating the pores with a molecule known as tetracyanoquinodimethane, or TCNQ, as described in a 2014 article in Science.

"The fact that a TCNQ-filled MOF conducts electricity quite well made us hopeful that we'd also see thermoelectricity, but it was by no means a given," said Sandia senior scientist Mark Allendorf. "We found that not only is the material thermoelectric but also the efficiency of its temperature conversion approaches that of the best conducting materials like bismuth telluride."

Thermoelectric devices convert heat to electricity and have no moving parts, making them extremely attractive for cooling and energy harvesting applications. Thermoelectric MOFs could take these advantages a step further with improved performance, smaller size and flexible designs.

The researchers also gained a fundamental understanding of the charge transport properties of these novel materials that furthers the long-range goal of molding MOFs into electronic and optoelectronic devices.

concept described

Described as "molecular tinker toys," MOFs have a crystalline structure that resembles molecular scaffolding, consisting of rigid organic molecules linked together by metal ions. Those organic molecules are the sticks and the metal ions are the balls.

The hybrid of inorganic and organic components produces an unusual combination of properties: nanoporosity, ultralarge surface areas and remarkable thermal stability, which are attractive to chemists seeking novel materials. The empty space framed by the organic molecules and metal ions is what truly sets apart MOFs -- empty space that can be filled with practically any small molecule a chemist chooses.

"We describe this concept as with the guest being practically any molecule small enough to fit in the MOF pores," explained Alec Talin, a materials scientist at Sandia. "The great thing about chemistry is you can synthesize a wide variety of molecules to be inserted inside a MOF to change its properties. In optimizing materials, this gives you a lot of knobs to turn."

MOF-enabled efficient energy conversion

The researchers had to devise a method to measure the thermoelectric properties of where TCNQ was the guest molecule. MOFs are so new -- they were only discovered in 1999 -- that researchers often find themselves on the frontier of science with few established tools or even a clear understanding of the material's fundamental properties.

Leonard, Talin and Kristopher Erickson, a former Sandia postdoctoral fellow, created a thermoelectric device by connecting Peltier heaters and coolers to each end of a thin film of to generate a tiny temperature gradient. They accurately measured the temperature gradient with an infrared camera while simultaneously measuring the generated voltage. From these data they obtained the voltage per unit of temperature change, known as the Seebeck coefficient.

Patrick Hopkins, an assistant professor of mechanical engineering at the University of Virginia, and his graduate student Brian M. Foley used a laser technique to measure the thermal conductivity.

The resulting measurements showed great promise. has a high Seebeck coefficient and low thermal conductivity, two important properties for efficient thermoelectricity. The Seebeck coefficient was in the same range as bismuth telluride, one of the top solid state thermoelectric materials.

"The next step is how do we make it better?" said Allendorf. "The energy conversion is not competitive yet with solid state materials, but we think we can improve that with better electrical conductivity."

Measurements yield fundamental understanding of electronic structure

The measurements also captured data that has advanced the team's fundamental understanding of the electronic structure. Sandia physicist Catalin Spataru and materials scientist Mike Foster conducted detailed electronic structure calculations of and Sandia materials scientist Reese Jones performed thermal conductivity simulations.

"We were trying to understand the role of the guest molecule, TCNQ in this case, when it infiltrates the pore of a MOF. Finding a representative configuration for the combined system via computer simulations was particularly challenging, as we don't expect guest molecules to form an ordered structure," said Spataru.

The simulations allowed the researchers to verify the source of the charge transport and establish that is a p-type material. Applications such as transistors and diodes require semiconductors of both p-type and n-type.

"We're now looking for a molecule that in combination with a MOF creates an n-type semiconductor with similar properties to said Leonard. "Once we find that, we'll be at the early stage of creating a full thermoelectric device."

MOFs in space, smartphones and cars

Once thermoelectric MOFs realize sufficient energy conversion efficiency, they could begin replacing existing cooling methods in devices where compactness and weight are priorities. Cameras mounted on satellites, which require constant cooling to function properly, are one example. Replacing the fans in computer chips with thermoelectric MOFs could reduce the weight of laptop computers, smartphones and other portable electronics and the number of moving parts that will eventually wear out.

Energy-harvesting thermoelectric devices capitalize on wasted heat to draw power. A thermoelectric device near a car engine or exhaust system could transfer that wasted heat into a power source for the car's electronics. Thermoelectric devices are also used to provide localized cooling for passenger comfort.

"Another potential application is using temperature gradients in the ground to power sensors in remote areas," said Leonard. "Thermoelectrics could be quite ideal for this application, as you could set up a device and leave it to run for long periods of time."

Future work seeks to improve efficiency

The researchers are now improving the thermoelectric efficiency of One avenue is to change the MOF films from the polycrystalline structures used in the initial research to single-crystal.

"A unified structure should conduct electricity better," said Sandia chemist Vitalie Stavila, who grew the MOF thin films. "However, we believe the interfaces between the polycrystal grains contribute to the low thermal conductivity. So the best energy conversion efficiency will likely be achieved by balancing these two parameters."

The researchers are also turning their thermoelectric measurement technique to other MOFs and materials, such as carbon nanotube thin films.

"This is a very exciting time to be working on MOFs," said Allendorf. "Fundamental science is only beginning to catch up with these new applications, which are advancing at rapid pace. The improved understanding we're beginning to get will help us extend MOFs into many exciting but challenging new areas."

####

About Sandia National Laboratories
Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

For more information, please click here

Contacts:
Patti Koning

925-294-4911

Copyright © Sandia National Laboratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Thin films

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project