Home > Press > Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya
![]() |
The surface area of the best cells in the study was already 9 cm2. This is a good starting point for upscaling the results to full wafers and all the way to the industrial scale. CREDIT:Aalto University |
Abstract:
The researchers from Finland's Aalto University and Universitat Politècnica de Catalunya have obtained the record-breaking efficiency of 22.1% on nanostructured silicon solar cells as certified by Fraunhofer ISE CalLab. An almost 4% absolute increase to their previous record is achieved by applying a thin passivating film on the nanostructures by Atomic Layer Deposition, and by integrating all metal contacts on the back side of the cell.
The surface recombination has long been the bottleneck of black silicon solar cells and has so far limited the cell efficiencies to only modest values. The new record cells consists of a thick back-contacted structure that is known to be highly sensitive to the front surface recombination. The certified external quantum efficiency of 96% at 300nm wavelength demonstrates that the increased surface recombination problem no longer exists and for the first time the black silicon is not limiting the final energy conversion efficiency.
The results were published online 18.5.2015 in Nature Nanotechnology.
For Nordic conditions
- The energy conversion efficiency is not the only parameter that we should look at, explains Professor Hele Savin from Aalto University, who coordinated the study. Due to the ability of black cells to capture solar radiation from low angles, they generate more electricity already over the duration of one day as compared to the traditional cells.
- This is an advantage particularly in the north, where the sun shines from a low angle for a large part of the year. We have demonstrated that in winter Helsinki, black cells generate considerably more electricity than traditional cells even though both cells have identical efficiency values, she adds.
In the near future, the goal of the team is to apply the technology to other cell structures - in particular, thin and multi-crystalline cells.
- Our record cells were fabricated using p-type silicon, which is known to suffer from impurity-related degradation. There is no reason why even higher efficiencies could not be reached using n-type silicon or more advanced cell structures, Savin predicts.
The development of the cells fabricated last year will continue in the upcoming "BLACK" project, supported by the European Union, in which Professor Savin together with her team will develop the technology further in cooperation with industry.
- The surface area of the best cells in the study was already 9 cm2. This is a good starting point for upscaling the results to full wafers and all the way to the industrial scale.
####
For more information, please click here
Contacts:
Hele Savin
358-505-410-156
Copyright © Aalto University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
How photoblueing disturbs microscopy February 26th, 2021
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Thin films
FEFU scientists are paving way for future tiny electronics and gadgets August 28th, 2020
Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020
Discoveries
Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021
How photoblueing disturbs microscopy February 26th, 2021
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Announcements
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Energy
Producing more sustainable hydrogen with composite polymer dots UPPSALA UNIVERSITY February 12th, 2021
Research partnerships
Pore-like proteins designed from scratch: By creating barrel-shaped proteins that embed into lipid membranes, biochemist have expanded the bioengineering toolkit February 19th, 2021
Solar/Photovoltaic
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |