Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Computing at the speed of light: Utah engineers take big step toward much faster computers

The overhead view of a new beamsplitter for silicon photonics chips that is the size of one-fiftieth the width of a human hair.
CREDIT: Dan Hixson/University of Utah College of Engineering
The overhead view of a new beamsplitter for silicon photonics chips that is the size of one-fiftieth the width of a human hair.

CREDIT: Dan Hixson/University of Utah College of Engineering

Abstract:
University of Utah engineers have taken a step forward in creating the next generation of computers and mobile devices capable of speeds millions of times faster than current machines.

Computing at the speed of light: Utah engineers take big step toward much faster computers

Salt Lake City, UT | Posted on May 18th, 2015

The Utah engineers have developed an ultracompact beamsplitter -- the smallest on record -- for dividing light waves into two separate channels of information. The device brings researchers closer to producing silicon photonic chips that compute and shuttle data with light instead of electrons. Electrical and computer engineering associate professor Rajesh Menon and colleagues describe their invention today in the journal Nature Photonics.

Silicon photonics could significantly increase the power and speed of machines such as supercomputers, data center servers and the specialized computers that direct autonomous cars and drones with collision detection. Eventually, the technology could reach home computers and mobile devices and improve applications from gaming to video streaming.

"Light is the fastest thing you can use to transmit information," says Menon. "But that information has to be converted to electrons when it comes into your laptop. In that conversion, you're slowing things down. The vision is to do everything in light."

Photons of light carry information over the Internet through fiber-optic networks. But once a data stream reaches a home or office destination, the photons of light must be converted to electrons before a router or computer can handle the information. That bottleneck could be eliminated if the data stream remained as light within computer processors.

"With all light, computing can eventually be millions of times faster," says Menon.

To help do that, the U engineers created a much smaller form of a polarization beamsplitter (which looks somewhat like a barcode) on top of a silicon chip that can split guided incoming light into its two components. Before, such a beamsplitter was over 100 by 100 microns. Thanks to a new algorithm for designing the splitter, Menon's team has shrunk it to 2.4 by 2.4 microns, or one-fiftieth the width of a human hair and close to the limit of what is physically possible.

The beamsplitter would be just one of a multitude of passive devices placed on a silicon chip to direct light waves in different ways. By shrinking them down in size, researchers will be able to cram millions of these devices on a single chip.

Potential advantages go beyond processing speed. The Utah team's design would be cheap to produce because it uses existing fabrication techniques for creating silicon chips. And because photonic chips shuttle photons instead of electrons, mobile devices such as smartphones or tablets built with this technology would consume less power, have longer battery life and generate less heat than existing mobile devices.

The first supercomputers using silicon photonics -- already under development at companies such as Intel and IBM -- will use hybrid processors that remain partly electronic. Menon believes his beamsplitter could be used in those computers in about three years. Data centers that require faster connections between computers also could implement the technology soon, he says.

###

Co-authors on the paper include research associate Randy Polson and doctoral students Bing Shen and Peng Wang.

####

For more information, please click here

Contacts:
Vince Horiuchi

801-585-7499

University of Utah College of Engineering
72 S. Central Campus Dr.
Room 1650 WEB
Salt Lake City, UT 84112
801-581-6911
fax: 801-581-8692
http://www.coe.utah.edu

Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Menon research group website:

Related News Press

News and information

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Arrowhead Begins Triple Combination Cohort in Chronic HBV Patients and Earns $25 Million Milestone Payment from Janssen April 23rd, 2019

Micro-LEDs achieve superior brightness with Picosun’s ALD technology April 23rd, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

Chip Technology

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Improving quantum computers April 19th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Optical computing/Photonic computing

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Researchers move closer to practical photonic quantum computing: New method fills critical need to measure large-scale quantum correlation of single photons February 28th, 2019

Discoveries

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

How slippery surfaces allow sticky pastes and gels to slide: Engineered surface treatment developed at MIT can reduce waste and improve efficiency in many processes April 23rd, 2019

Coincidence helps with quantum measurements: New method enables quantum simulations on larger systems April 22nd, 2019

Announcements

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Arrowhead Begins Triple Combination Cohort in Chronic HBV Patients and Earns $25 Million Milestone Payment from Janssen April 23rd, 2019

Micro-LEDs achieve superior brightness with Picosun’s ALD technology April 23rd, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

How slippery surfaces allow sticky pastes and gels to slide: Engineered surface treatment developed at MIT can reduce waste and improve efficiency in many processes April 23rd, 2019

Coincidence helps with quantum measurements: New method enables quantum simulations on larger systems April 22nd, 2019

Photonics/Optics/Lasers

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

Tiny optical elements could one day replace traditional refractive lenses: High-resolution imaging applications include wide-angle cameras, miniature endoscopes March 28th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project