Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Computing at the speed of light: Utah engineers take big step toward much faster computers

The overhead view of a new beamsplitter for silicon photonics chips that is the size of one-fiftieth the width of a human hair.
CREDIT: Dan Hixson/University of Utah College of Engineering
The overhead view of a new beamsplitter for silicon photonics chips that is the size of one-fiftieth the width of a human hair.

CREDIT: Dan Hixson/University of Utah College of Engineering

Abstract:
University of Utah engineers have taken a step forward in creating the next generation of computers and mobile devices capable of speeds millions of times faster than current machines.

Computing at the speed of light: Utah engineers take big step toward much faster computers

Salt Lake City, UT | Posted on May 18th, 2015

The Utah engineers have developed an ultracompact beamsplitter -- the smallest on record -- for dividing light waves into two separate channels of information. The device brings researchers closer to producing silicon photonic chips that compute and shuttle data with light instead of electrons. Electrical and computer engineering associate professor Rajesh Menon and colleagues describe their invention today in the journal Nature Photonics.

Silicon photonics could significantly increase the power and speed of machines such as supercomputers, data center servers and the specialized computers that direct autonomous cars and drones with collision detection. Eventually, the technology could reach home computers and mobile devices and improve applications from gaming to video streaming.

"Light is the fastest thing you can use to transmit information," says Menon. "But that information has to be converted to electrons when it comes into your laptop. In that conversion, you're slowing things down. The vision is to do everything in light."

Photons of light carry information over the Internet through fiber-optic networks. But once a data stream reaches a home or office destination, the photons of light must be converted to electrons before a router or computer can handle the information. That bottleneck could be eliminated if the data stream remained as light within computer processors.

"With all light, computing can eventually be millions of times faster," says Menon.

To help do that, the U engineers created a much smaller form of a polarization beamsplitter (which looks somewhat like a barcode) on top of a silicon chip that can split guided incoming light into its two components. Before, such a beamsplitter was over 100 by 100 microns. Thanks to a new algorithm for designing the splitter, Menon's team has shrunk it to 2.4 by 2.4 microns, or one-fiftieth the width of a human hair and close to the limit of what is physically possible.

The beamsplitter would be just one of a multitude of passive devices placed on a silicon chip to direct light waves in different ways. By shrinking them down in size, researchers will be able to cram millions of these devices on a single chip.

Potential advantages go beyond processing speed. The Utah team's design would be cheap to produce because it uses existing fabrication techniques for creating silicon chips. And because photonic chips shuttle photons instead of electrons, mobile devices such as smartphones or tablets built with this technology would consume less power, have longer battery life and generate less heat than existing mobile devices.

The first supercomputers using silicon photonics -- already under development at companies such as Intel and IBM -- will use hybrid processors that remain partly electronic. Menon believes his beamsplitter could be used in those computers in about three years. Data centers that require faster connections between computers also could implement the technology soon, he says.

###

Co-authors on the paper include research associate Randy Polson and doctoral students Bing Shen and Peng Wang.

####

For more information, please click here

Contacts:
Vince Horiuchi

801-585-7499

University of Utah College of Engineering
72 S. Central Campus Dr.
Room 1650 WEB
Salt Lake City, UT 84112
801-581-6911
fax: 801-581-8692
http://www.coe.utah.edu

Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Menon research group website:

Related News Press

News and information

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Chip Technology

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

ACM Research Announces Global Commercial Availability of Environmentally Friendly, Cost-Effective Advanced Wafer Cleaning System: Ultra C Tahoe delivers single wafer cleaning performance with one-tenth of the sulfuric acid consumption December 3rd, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Growing nano-tailored surfaces using micellar brushes November 29th, 2019

Optical computing/Photonic computing

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability November 29th, 2019

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

Discoveries

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Growing nano-tailored surfaces using micellar brushes November 29th, 2019

Announcements

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Photonics/Optics/Lasers

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability November 29th, 2019

Researchers synthesize 'impossible' superconductor October 3rd, 2019

Trapping and moving tiny particles using light September 24th, 2019

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project