Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Cotton fibres instead of carbon nanotubes

Abstract:
Plant-based cellulose nanofibres do not pose a short-term health risk, especially short fibres, shows a study conducted in the context of National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64). But lung cells are less efficient in eliminating longer fibres.

Cotton fibres instead of carbon nanotubes

Bern, Switzerland | Posted on May 9th, 2015

Similar to carbon nanotubes that are used in cycling helmets and tennis rackets, cellulose nanofibres are extremely light while being extremely tear-resistant. But their production is significantly cheaper because they can be manufactured from plant waste of cotton or banana plants. "It is only a matter of time before they prevail on the market," says Christoph Weder of the Adolphe Merkle Institute at the University of Fribourg.

In the context of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64), he collaborated with the team of Barbara Rothen-Rutishauser to examine whether these plant-based nanofibres are harmful to the lungs when inhaled. The investigation does not rely on animal testing; instead the group of Rothen-Rutishauser developped a complex 3D lung cell system to simulate the surface of the lungs by using various human cell cultures in the test tube.

The shorter, the better

Their results (*) show that cellulose nanofibres are not harmful: the analysed lung cells showed no signs of acute stress or inflammation. But there were clear differences between short and long fibres: the lung cell system efficiently eliminated short fibres while longer fibres stayed on the cell surface.

"The testing only lasted two days because we cannot grow the cell cultures for longer," explains Barbara Rothen-Rutishauser. For this reason, she adds, they cannot say if the longer fibre may have a negative impact on the lungs in the long term. Tests involving carbon nanotubes have shown that lung cells lose their equilibrium when they are faced with long tubes because they try to incorporate them into the cell to no avail. "This frustrated phagocytosis can trigger an inflammatory reaction," says Rothen-Rutishauser. To avoid potential harm, she recommends that companies developing products with nanofibres use fibres that are short and pliable instead of long and rigid.

National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64)

The National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) hopes to be able to bridge the gaps in our current knowledge on nanomaterials. Opportunities and risks for human health and the environment in relation to the manufacture, use and disposal of synthetic nanomaterials need to be better understood. The projects started their research work in December 2010.

Full bibliographic information
(*) C. Endes, S. Mueller, C. Kinnear et al. (2015). Fate of Cellulose Nanocrystal Aerosols Deposited on the Lung Cell Surface In Vitro. Biomacromolecules online: doi: 10.1021/acs.biomac.5b00055

####

About Swiss National Science Foundation (SNSF)
Acting on a mandate issued by the Swiss Federal Government, the Swiss National Science Foundation (SNSF) supports research undertaken inside and outside universities and fosters young scientific talent.

The Foundation Council is the governing body of the SNSF, which was founded in 1952. The Foundation Council has representatives of the scientific and research communities, the Federal Government and the cantons as well as economic and cultural institutions.

The Research Council, which is divided into four Divisions, evaluates research projects and makes decisions about awarding grants. The Local Research Commissions award fellowships for prospective researchers and assist the SNSF with the evaluation of grant applications.

The Secretariat, based in Berne, does the groundwork for the business of the Foundation and Research Councils and is responsible for administrative and financial duties.

For more information, please click here

Contacts:
Martina Stofer
0041 31 308 23 87


Prof. Barbara Rothen-Rutishauser
Adolphe Merkle Institute
University of Fribourg
Ch. des Verdiers 4
CH-1700 Fribourg
Tel.: +41 (0) 26 300 95 02

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Fullerenes bridge conductive gap in organic photovoltaics: Efficient cathode interlayers made of ionene polymers refined with pendant fullerenes March 29th, 2019

Odd reaction creates a stir in the lab: Rice University researchers find using certain stir bars can create laboratory errors March 29th, 2019

Discoveries

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

Materials/Metamaterials

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Mystery of negative capacitance in perovskite solar cells solved April 5th, 2019

Announcements

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Safety-Nanoparticles/Risk management

Plastic waste disintegrates into nanoparticles, study finds December 28th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

TUBALL single wall carbon nanotubes: No ecotoxicity found, unlike other carbon nanotubes October 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project