Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Iranian Scientists Produce Magnetic Recyclable Photocatalyst to Purify Polluted Water

Abstract:
Iranian researchers from University of Mohaqeq Ardabili used nanotechnology to produce a photocatalyst which can be used for purification of water.

Iranian Scientists Produce Magnetic Recyclable Photocatalyst to Purify Polluted Water

Tehran, Iran | Posted on April 8th, 2015

The photocatalyst was made of non-toxic and eco-friendly materials and can be reused five times in the process. Results of the research can be used in water and wastewater purification industries.

There are two major problems in photocatalytic processes, which limit their applications at industrial scale. Big energy gap in normal photocatalysts prevents them from absorbing the visible light of the sun. Since visible light has more percentage of sunlight than ultraviolet light, the degradation of pollutants by visible light is in priority in comparison with ultraviolet light. The separation of the photocatalyst from the process cycle by filtration and centrifugal devices is the second problem in this method.

The application of the photocatalyst produced in this research is an appropriate option for the elimination of environmental pollutions and for the degradation of organic dyes in water due to its simple application and high activity in the presence of visible light.

Among the advantages of this photocatalyst, mention can be made of the simplicity of the production method, low cost of the raw materials, non-toxicity, and being eco-friendly. Moreover, the photocatalyst can be recycled and reused due to its magnetic properties.

This method has been used to produce the photocatalyst at large scale at low temperature, and it does not require any additives or any preparation process. Therefore, the results of the research can be used in the purification of wastewater of dyeing industry and in the purification of drinking water.

Results of the research have been published in Ceramics International, vol. 41, issue 4, 2015, pp. 5634-5643.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Chemistry

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

Kanazawa University research: Chirality inversion in a helical molecule at controlled speeds February 6th, 2019

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected January 28th, 2019

Discoveries

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Announcements

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Water

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

A powerful catalyst for electrolysis of water that could help harness renewable energy January 25th, 2019

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance November 30th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project