Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > University of Houston researchers discover N-type polymer for fast organic battery: New material opens the door to low-cost, environmentally friendly energy use

Rational combination of advantages of state-of-the-art polymers has resulted in highly electronically conducting polymers that could enable a battery to be 80 percent charged within 6 seconds, and fully charged in another 18 seconds.
CREDIT: University of Houston
Rational combination of advantages of state-of-the-art polymers has resulted in highly electronically conducting polymers that could enable a battery to be 80 percent charged within 6 seconds, and fully charged in another 18 seconds.

CREDIT: University of Houston

Abstract:
Researchers at the University of Houston have reported developing an efficient conductive electron-transporting polymer, a long-missing puzzle piece that will allow ultrafast battery applications.

University of Houston researchers discover N-type polymer for fast organic battery: New material opens the door to low-cost, environmentally friendly energy use

Houston, TX | Posted on April 6th, 2015

The discovery relies upon a "conjugated redox polymer" design with a naphthalene-bithiophene polymer, which has traditionally been used for applications including transistors and solar cells. With the use of lithium ions as dopant, researchers found it offered significant electronic conductivity and remained stable and reversible through thousands of cycles of charging and discharging energy.

The breakthrough, described in the Journal of the American Chemical Society and featured as ACS Editors' Choice for open access, addresses a decades-long challenge for electron-transport conducting polymers, said Yan Yao, assistant professor of electrical and computer engineering at the UH Cullen College of Engineering and lead author of the paper.

Researchers have long recognized the promise of functional organic polymers, but until now have not been successful in developing an efficient electron-transport conducting polymer to pair with the established hole-transporting polymers. The lithium-doped naphthalene-bithiophene polymer proved both to exhibit significant electronic conductivity and to be stable through 3,000 cycles of charging and discharging energy, Yao said.

The discovery could lead to a cheaper alternative to traditional inorganic-based energy devices, including lithium batteries. Ultimately, Yao said, it could translate into less expensive consumer devices and even less expensive electric cars.

Yao's research group focuses on green and sustainable organic materials for energy generation and storage. He is also a principal investigator for the Texas Center for Superconductivity at UH.

Yanliang Liang, a research associate at UH and first author on the paper, said researchers aren't trying to compete directly with conventional lithium-ion batteries. "We are trying to demonstrate a new direction," he said.

Liang said conventional inorganic metal-based batteries and energy storage devices are expensive partly because the materials used to make them, including cobalt and silicon-based compounds, require huge energy expenditures to process. Organic polymers can be processed at relatively low temperatures, lowering the cost.

They also produce less CO2, he said, adding to their environmental advantage. And while conventional materials are finite, organic polymers could potentially be synthesized from biomass.

"Organic π-conjugated polymers are emerging as a materials class for energy-related applications, enabling a path to a more sustainable energy landscape without the need of energy-intensive, expensive and sometimes toxic metal-based compounds," the researchers wrote, concluding that "a model polymer, P(NDI2OD-T2), was stably and reversibly n-doped to a high doping level of 2.0, a significant progress for electron-transporting π-conjugated polymers. ... With rational molecular design, π-conjugated redox polymers will establish new design space in polymer chemistry and see wide-spread applications, especially in energy-related ones such as batteries, supercapacitors and thermoelectrics."

The basic polymer used in the work was discovered in 2009; Yao said it was provided by members of the research team from Polyera Corporation, a technology company based in Illinois. Although naphthalene-bithiophene has been used for transistors and other applications since its discovery, this is the first time it has been converted for use in energy storage.

That was done through the addition of lithium and raised the polymer's doping level from a previously reported 0.1 to 2.0.

The results are record-setting. The polymer exhibits the fastest charge-discharge performance for an organic material under practical measurement conditions, allowing a battery to be 80 percent charged within 6 seconds and fully charged in another 18 seconds, Liang said.

Conventional inorganic batteries still are capable of holding more energy than the organic battery, and Yao said work will continue to improve the storage capacity of the material. His group also will continue to do basic scientific research on the polymer to learn more about it, he said.

####

About University of Houston
The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 40,900 students in the most ethnically and culturally diverse region in the country.

For more information, please click here

Contacts:
Jeannie Kever

713-743-0778

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information, the paper is available at:

Related News Press

News and information

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Discoveries

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Materials/Metamaterials

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Announcements

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Printing Flexible Graphene Supercapacitors December 1st, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project