Home > Press > MIPT researchers put safety of magic anti-cancer bullet to test
![]() |
| This image shows fluorescent nanoparticles in cells. CREDIT: Elena Petersen |
Abstract:
A group of MIPT researchers together with their colleagues from Moscow, Nizhny Novgorod, Australia and the Netherlands have carried out the first systematic study analyzing the safety of so-called upconversion nanoparticles that may be used to treat skin cancer and other skin diseases. This study is one of the most important steps on the path to new, safe and effective methods to diagnose and treat cancer.
It was back in 1908 that the German naturalist and doctor Paul Ehrlich came up with the idea of a "magic bullet"- a drug that would fight only pathogenic microbes or cancer cells, without affecting the healthy cells. One century later chemists and physicians are closer than ever before to turning this idea into reality, thanks to nanotechnology.
Entering the body, the nanoparticles of certain substances may accumulate in the tumor cells, "ignoring" the healthy ones. It's possible to attach the molecules of drugs or diagnostic agents to such nanoparticles to find cancer cells and destroy them without damaging the other cells in the body.
For this purpose, researchers use nanoparticles of gold and ferromagnetic materials, heating them with high frequency electric currentsso that they kill cancer cells from the inside. One of the most promising types of nanoparticles for diagnosing and treating cancer is so-called upconversion nanoparticles (UCNPs). They convert near-infrared radiation, which can penetrate deep into human tissue, in visible light, making it possible to detect cancerous cells in body tissues, change them and monitor the progress of treatment. UCNP scan be configured so that they will release drugs with the help of light.
However, before developing therapeutic methods based on the use of nanoparticles, it must be determined whether they can cause any harm to healthy cells or not - that is the subject of the research done by Elena Petersen and Inna Trusova of MIPT and their colleagues from Moscow, Nizhny Novgorod, Australia and the Netherlands.
"Despite the fact that there're a large number of studies on the cytotoxicity of UCNPs, all of them are circumstantial in a way, because the study of this problem was peripheral for their authors," says Petersen, the head of the Laboratory of Cellular and Molecular Technologies at MIPT. "We've done the first systematic study of the effects of nanoparticles on cells."
The researchers studied the properties of one of the most common types of UCNPs, which is derived from sodium yttrium fluoride (Na[YF4]) doped with the rare-earth elements erbium and ytterbium. The group tested how these nanoparticles are absorbed by fibroblasts (the cells of human connective tissue)and keratinocytes (epidermal cells), and studied how nanoparticles affect these cells' viability.
The results show that the cytotoxicity of UCNPs depends on the cell type. They are not toxic for dermal fibroblasts and slightly toxic for keratinocytes. However, the toxicity for keratinocytes depends on the concentration of the nanoparticles, meaning that these cells can be used as a biological indicator for evaluating the safety of different types of UCNPs.
In addition to the "naked" nanoparticles, there searchers tested several modifications of polymer-coated nanoparticles. In these cases, the difference between the response of fibroblasts and keratinocytes was even higher, for example, the particles coated with polyethylenimine interfered with the intracellular metabolism of the keratinocytes, but had no effect on the fibroblasts. The group identified the types of polymer coating that made the nanoparticles as safe as possible.
"This study is an important step towards beginning to use UCNPs to diagnose and treat skin cancer and other skin diseases," says Petersen. According to her, there are already studies of the use of nanoparticles for the treatment of skin diseases, but to utilize them on a large scale it is necessary to prove that they are safe and efficient.
###
The study was funded through a megagrant of the Russian government and a grant of the Russian Foundation for Basic Research.
Link to the article: A. Guller et al., Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Research 2015, DOI: 10.1007/s12274-014-0641-6
####
For more information, please click here
Contacts:
Stanislav Goryachev
7-964-501-2307
Copyright © Moscow Institute of Physics and Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
Cancer
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Safety-Nanoparticles/Risk management
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
New discovery aims to improve the design of microelectronic devices September 13th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||